Skip to main content

Interaction of polysilicic and monosilicic acid with mineral surfaces

  • Chapter
Water-Rock Interaction

Part of the book series: Water Science and Technology Library ((WSTL,volume 40))

Abstract

Interaction of polysilicic and monosilicic acid was studied via adsorption experiments with lepidocrocite, hematite, feroxyhyte, goethite, akaganeite, magnetite, ferrihydrite, and gibbsite. The kinetics of monosilicic acid adsorption follows a first order reaction. At equilibrium monosilicic acid adsorption may be described by surface complexation with an adsorption maximum at pH 9.8. If polysilicic acid is adsorbed to the surface, one part is bound to the surface within a relatively short time. The other part decomposes to monomer in the solution. The polymeric silica at the surface is stabilised at pH < 6. Thus the present results show that polymerization of silica at the mineral surface has to be considered only in acidic solutions.

The adsorption experiments with monosilicic acid onto iron hydroxides result in a molar ratio of Si/Fe = 0.21 at the mineral surface. Considering natural systems it may be concluded that the silica content of recent sedimentary iron oxides (Si/Fe = 0.19) is directly related to the adsorption of silicic acid onto the primary precipitates via the formation of surface complexes. The adsorption of monosilicic acid may represent the initial step for the formation of silicates. The experimental results show that this is favoured in slightly alkaline solutions. In contrast to monomeric silica disordered linked silica polymers are expected to inhibit the crystallisation of silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez R. and Sparks D. L. (1985) Polymerization of silicate anion in solutions at low concentrations. Nature 318, 649–651.

    Article  Google Scholar 

  • Applin K. R. (1987) The diffusion of dissolved silica in dilute aqueous solution.Cosmochim. Acta 51(9), 2147–2151.

    Article  Google Scholar 

  • Arnorsson S., Sigurdsson S., and Svavarsson H. (1982) The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0° to 370°C. Geochim. Cosmochim. Acta 46, 1513–1532.

    Article  Google Scholar 

  • Baes C. F. and Mesmer R. E. (1976) The hydrolysis of cations. Wiley-Interscience, New York, 489p.

    Google Scholar 

  • Baumann H. (1959) Polymerisation und Depolymerisation der Kieselsäure unter verschiedenen Bedingungen. Kolloid Zeitschrift 162(1), 28–35.

    Article  Google Scholar 

  • Bernal J. D., Dasgupta D. R., and Mackay A. L. (1959) The oxides and hydroxides of iron and their structural interrelationship. Clay Min. Bull. 4, 15–30.

    Article  Google Scholar 

  • Böhme G., Dietzel M., Heinrichs H., Heydemann A., Schlabach S., and Usdowski E. (1999)Wechselwirkungen zwischen Lösungen und Festkörpern in offenen Systemen und strömenden Medien. In: Wechselwirkungen an geologischen Grenzflächen - SFB 468 Arbeits- und Ergebnisbericht, Universität Göttingen. A4–1 - A4–45.

    Google Scholar 

  • Brady P. V. and House W. A. (1996) Surface controlled dissolution and growth of minerals. In: Physics and Chemistiy of Mineral Surfaces (eds.: Brady, P. V.) Chapter 4. CRC Press. Boca Raton New York London Tokyo, 225–305.

    Google Scholar 

  • Brauer G. (1982) Handbuch der präparativen anorganischen Chemie. Band 3. Enke, Stuttgart.

    Google Scholar 

  • Busey R. H. and Mesmer R. E. (1977) Ionization equilibria of silicic acid and polysilicate formation in aqueous sodium chloride solutions to 300°C. Inorg. Chem. 16(10), 2444–2450.

    Article  Google Scholar 

  • Carlson L. and Schwertmann U. (1981) Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45(3), 421–429.

    Article  Google Scholar 

  • Cary L. W., De Jong B. H. W. S., and Dibble W. E. (1982) A 29Si NMR study of silica species in dilute aqueous solution. Geochim. Cosmochim. Acta 46(7), 1317–1320.

    Article  Google Scholar 

  • Casey W. H., Westrich H. R., Banfield J. F., Ferruzzi G., and Arnold G. W. (1993) Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature 366, 253–256.

    Article  Google Scholar 

  • Cornell R. M. and Giovanoli R. (1987) The influence of silicate species on the morphology of goethite (a- FeOOH) grown from ferrihydrite (5Fe2O3 9H2O). J. Chem. Soc., Chem. Commun., 413-414.

    Google Scholar 

  • Cornell R. M. and Schwertmann U. (1996) The iron oxides. Structure, properties, reactions, occurrence and uses. VHC Verlagsgesellschaft mbH. Weinheim, 573p.

    Google Scholar 

  • Davies S. (1964) Silica in streams and ground water. Am. J. Sci. 262, 870–876.

    Article  Google Scholar 

  • Davis J. A. and Kent D. B. (1990) Surface complexation modeling in aqueous geochemistry. In: Mineral- water interface geochemistiy (eds.: Hochella, M.F., White, A.F.) Chapter 5. Rev. Min. 23, 177–260.

    Google Scholar 

  • Dietzel M. (1993) Depolymerisation von hochpolymerer Kieselsäure in wäßriger Lösung. Dissertation. Universität Göttingen, Germany, 93p.

    Google Scholar 

  • Dietzel M. (1998) Gelöste polymere und monomere Kieselsäuren und die Wechselwirkung mit Gibbsit und Fe-O-OH-Festphasen. Habilitations-Schrift, Universität Göttingen, 205p.

    Google Scholar 

  • Dietzel M. (2000) Dissolution of silicates and the stability of polysilicic acid. Geochim. Cosmochim. Acta 64(19), 3275–3281.

    Article  Google Scholar 

  • Dietzel M. and Usdowski E. (1995) Depolymerization of soluble silicate in dilute aqueous solutions. Colloid Polym. Sci. 273, 590–597.

    Article  Google Scholar 

  • Dietzel M. and Böhme G. (1997) Adsorption und Stabilität von polymerer Kieselsäure. Chem. Erde 57, 189– 203.

    Google Scholar 

  • Dove P. M. and Rimstidt J. D. (1994) Silica-Water Interactions, In: Silica (eds.: Heaney P.J., Prewitt C.T., Gibbs G. V.). Chapter 8. Rev. Min. 29, 259–308.

    Google Scholar 

  • Dzombak D. A. and Morel F. M. M. (1990) Surface complexation modeling. Hydrous ferric oxide. Wiley-Inter science, New York, 393p.

    Google Scholar 

  • Eikenberg J. (1990) On the problem of silica solubility at high pH. Nationale Genossenschaft für die Lagerung radioaktiver Abfälle, Baden (Switzland). Technical Report 90-36, 54p.

    Google Scholar 

  • Füchtbauer H. (1988) Sediment-Petrologie Teil II. Sedimente und Sedimentgesteine. Schweizerbar’sche Verlagsbuchhandlung, Stuttgart, 1141p.

    Google Scholar 

  • Glasauer S. M. (1995) Silicate associated with Fe(hydr)oxides. Dissertation, Technische Universität München-Weihenstephan, 133p.

    Google Scholar 

  • Grenthe I., Fuger J., Konings R. J. M., Lemire R. J., Muller A. B., Nguyen-Trung Cregu C., and Wanner H. (1992) Chemical Thermodynamics of Uranium. Chemical Thermodynamics 1. Nuclear Energy Agency. North-Holland Elsevier, 750pp.

    Google Scholar 

  • Hansen H. C. B., Wechte T. P., Raulund-Rasmussen K., and Borggaard O. K. (1994) Stability constants for silicate adsorbed to ferrihydrite. Clay Min. 29, 341–350.

    Article  Google Scholar 

  • Hem J. D. (1970) Study and interpretation of the chemical characteristics of natural waters. Geol. Sur. Water-Supply Paper 1473, 363p.

    Google Scholar 

  • Hingston F. J., Posner A. M., and Quirk J. P. (1972) Anion adsorption by goethite and gibbsite. 1. The role of the proton in determining adsorption envelopes. J. Soil Sci. 23(2), 177–192.

    Article  Google Scholar 

  • Iler R. K. (1979) The chemistry of silica - Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley- Interscience, New York, 866p.

    Google Scholar 

  • Jones B. F., Retting S. F., and Eugster H. P. (1967) Silica in alkaline brines. Science 158, 1310–1314.

    Article  Google Scholar 

  • Knollmann S. (2001) Korrosionsprodukte in Trinkwasserrohren: Gelöste Kieselsäure und die Stabilität von Goethit. Bachelorarbeit, Universität Göttingen, 44p.

    Google Scholar 

  • Liss P. S. and Spencer C. P. (1970) Abiological processes in the removal of silicate from sea water. Geochim. Cosmochim. Acta 34(10), 1073–1088.

    Article  Google Scholar 

  • Lövgren L., Sjöberg S., and Schindler P. W. (1990) Acid/base reactions and A1(III) complexation at the surface of goethite. Geochim. Cosmochim. Acta 54(5), 1301–1306.

    Article  Google Scholar 

  • Lumbsdom D. G. and Evans L. G. (1994) Surface complexation model parameters for goethite (a-FeOOH). J. Colloid Interface Sci. 164, 119–125.

    Article  Google Scholar 

  • McKeague J. A. and Cline M. G. (1963) Silica in soil solutions. II. The adsorption of monosilicic acid by soil and by other substances. Canadian Journal of Soil Science 43, 83–96.

    Article  Google Scholar 

  • Morel F. M. M. and Hering J. G. (1993) Principles and applications of aquatic chemistry. Wiley-Interscience. New York Toronto, 588p.

    Google Scholar 

  • Mott C. J. B. (1969) Sorption of Anions by Soils. S. C. I. Monograph 31, 40–53.

    Google Scholar 

  • Müller G. and Sigg L. (1992) Adsorption of lead(II) on the goethite surface; voltametric evaluation of surface complexating parameters. J. Colloid Interface Sci. 148, 517–532.

    Article  Google Scholar 

  • Obihara C. H. and Russell E. W. (1972) Specific adsorption of silicate and phosphate by soils. J. Soil Sci. 23, 103–117.

    Google Scholar 

  • Parfitt R. L. (1978) Anion adsorption by soils and soil materials. Dep. Argon. Ser. Pap. 1225.

    Google Scholar 

  • Parfitt R. L., Van der Gaast S. J., and Childs C. W. (1992) A structural model for natural siliceous ferrihydrite. Clays and Clay Minerals40(6), 675–681.

    Article  Google Scholar 

  • Parks G. A. (1990) Surface energy and adsorption at mineral interface: An introduction. Mineral-water interface geochemistry (eds.: Hochella, M.F., White, A.F.) Chapter 4. Rev. Min. 23, 133–176.

    Google Scholar 

  • Rimstidt J. D. and Barnes H. L. (1980) The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44(11), 1683–1699.

    Article  Google Scholar 

  • Rowe J. J., Fournier R. O., and Morey G. W. (1973) Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960-1965. Geol. Surv. Bull. 1303, 31p.

    Google Scholar 

  • Schecher W. D. and McAvoy D. C. (1998) MINEQL+: A chemical equilibrium modeling system, Version 4.0 for Windows, User’s manual. Environmental Research Software, Hallowell, Maine, 318p.

    Google Scholar 

  • Schwertmann U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z. Planzenernaehr. Dueng. Bodenkd. 108, 37–45.

    Article  Google Scholar 

  • Schwertmann U. and Cornell R. M. (1991) Iron oxides in the laboratory. VCH Verlagsgesellschaft Weinheim, 32p.

    Google Scholar 

  • Schwertmann U. and Thalmann H. (1976) The influence of Fe(II), Si and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Min. 11, 189–200.

    Article  Google Scholar 

  • Seward T. M. (1974) Determination of the first ionization constant of silicic acid from quartz solubility in borate buffer solutions to 350°C. Geochim. Cosmochim. Acta 38(11), 1651–1664.

    Article  Google Scholar 

  • Siever R. (1972) Silicon-abundance in natural waters, 14-1. In: Handbook of Geochemistry 11-2 (ed.: Wedepohl, K.H.) Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Sigg L. and Stumm W. (1981) The interaction of anions and weak acids with the hydrous goethite (a-FeOOH) surface. Colloids and Surfaces 2, 101–117.

    Article  Google Scholar 

  • Sigg L. and Stumm W. (1994) Aquatische Chemie: eine Einfuhrung in die Chemie wässriger Lösung und natürlicher Gewässer. 3.Aufl. Zürich, Verl. der Fachvereine, Stuttgart, Teubner.

    Google Scholar 

  • Sjöberg S., Nordin A., and Ingri N. (1981) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. II. Formation constants for the monosilicate ions SiO(OH)-3 and SiO2(OH)22- .Mar. Chem. 10, 521–532.

    Article  Google Scholar 

  • Sjöberg S., Hägglund Y., Nordin A., and Ingri N. (1983) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solutions: V. Acidity constants of silicic acid and the ionic product of water in the medium range 0.05-2.0m Na(Cl) at 25°C. Mar. Chem. 13, 35–44.

    Article  Google Scholar 

  • SjÖberg S., Ȕhman L. O., and Ingri N. (1985) Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution.11. Polysilicate formation in alkaline aqueous solution. A combined potentiometric and 29Si NMR study. Acta Chem. Scand. A 39, 93–107.

    Article  Google Scholar 

  • Stumm W. (1992) Chemistry of the solid-water interface. Wiley-Interscience, New York, 428p.

    Google Scholar 

  • Stumm W. and Morgan J. J. (1996) Aquatic chemistry - Chemical equilibria and rates in natural waters. 3nd ed. Wiley-Intersience New York, 1022p.

    Google Scholar 

  • White D. E., Brannock W. W., and Murata K. J. (1956) Silica in hot-spring waters. Geochim. Cosmochim. Acta 10(1), 27–59.

    Article  Google Scholar 

  • Williams L. A. and Crerar D. A. (1985) Silica diagenesis, II. general mechanisms. J. Sed. Pet. 55(3), 312–321.

    Google Scholar 

  • Yates D. E. (1975) The structure of the oxide/aqueous electrolyte interface. Ph. D. Thesis Univ. Melbourne. Australia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dietzel, M. (2002). Interaction of polysilicic and monosilicic acid with mineral surfaces. In: Stober, I., Bucher, K. (eds) Water-Rock Interaction. Water Science and Technology Library, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0438-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0438-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3906-2

  • Online ISBN: 978-94-010-0438-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics