Advertisement

Water-Rock Reactions in a Barite-Fluorite Underground Mine, Black Forest (Germany)

  • Ingrid Stober
  • Yinian Zhu
  • Kurt Bucher
Part of the Water Science and Technology Library book series (WSTL, volume 40)

Abstract

Mineralization in the more than 700 m deep underground barite and fluorite mine Clara occurs in 3 major vein systems within the central gneiss complex of the Black Forest, SW-Germany. They are associated with quartz, carbonate, various sulfides, natural alloys and about 250 different species of secondary minerals. Water transport is strongly focused within the mineral veins owing to their high fracture and cavity-related permeability. Water from 25 different sampling points in and around the mine were collected and analyzed monthly during one year in order to elucidate the interaction of surface water with the various rock types. On the basis of the relative proportions of the major ions 3 types of water could be distinguished: Ca-HCO3-, Ca-SO4-HCO3- and Ca-SO4-Cl-water. The source of the solutes is related to fluid-rock reaction, especially feldspar weathering. All waters within the mine are very close to quartz saturation. They are saturated or slightly undersaturated with respect to calcite after relatively short flow distances through the fracture pore space. All waters are undersaturated regarding dolomite or gypsum. On pertinent activity diagrams, all waters fall into the stability field of kaolinite which is an observed major alteration product in veins and rocks.

Keywords

Fluid Inclusion Crystalline Basement Saturation Index Fluorite Mine Barite Vein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman R. G. (1988): Internally-Consistent Thermodynamic Data for Minerals in the System: Na2O- K2O- CaO- MgO- FeO-Fe2O3- A12O3- SiO2- TiO2- H2O- CO2. Journal of Petrology 29, 445–522.Google Scholar
  2. Biehler, D. (1995): Kluftgrundwässer im kristallinen Grundgebirge des Schwarzwaldes - Ergebnisse von Untersuchungen in Stollen.- Dissertation an der Universität Tübingen, TGA, C22, 103 S., Tübingen.Google Scholar
  3. Bliedtner, M. & Martin, M., (1986): Erz- und Minerallagerstätten des Mittleren Schwarzwaldes. - Geologisches Landesamt Baden-Württemberg, 782 p., Freiburg iBr.Google Scholar
  4. Böhlke, J.K. & Irwin, J.J. (1992): Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids.- Geochemica et Cosmochemica Acta, v. 56, p. 203–225.CrossRefGoogle Scholar
  5. Bowers, T.S., Jackson, K.J., Helgeson, H.C. (1984): Equilibrium Activity Diagrams for Coexisting Minerals and Aqueous Solutions at Pressures and Temperature to 5kb and 600°C. Springer-Verlag Berlin Heidelberg.Google Scholar
  6. Bucher, K., Stober, I. (2001a): Does plagioclase control the composition of groundwater in the crystalline basement?.- Water-Rock Interaction (WRI-10), ed. R. Cidu, p. 149–152, Balkema publishers.Google Scholar
  7. Bucher, K., Stober, I. (2001b): Water-rock reaction experiments with Black Forest gneiss and granite, this volumeGoogle Scholar
  8. Edmunds, W.M. (1996): Bromine geochemistry of British groundwaters.- Mineralogical Magazine, Vol.60, pp.275–284.CrossRefGoogle Scholar
  9. Groschopf, R., Kessler, G., Leiber, J., Maus, H., Ohmert, W., Schreiner, A.,Wimmenauer, W. (1996): Erläuterungen zur Geologischen Karte von Baden- Württemberg Freiburg i.Br. und Umgebung.- Geologisches Landesamt B.-W., 3. Aufl., 364 S., 27 Abb., Freiburg.Google Scholar
  10. Huck, K.-H. (1986): Clara am Schwarzbruch. In: Bliedtner, M. & Martin, M.: Erz- und Minerallagerstätten des Mittleren Schwarzwaldes. - Geologisches Landesamt Baden-Württemberg, Freiburg iBr., 366–399.Google Scholar
  11. Kullerud, K. (2000): Occurrence and origin of Cl-rich amphibole and biotite in the Earth’s crust - implications for fluid composition and evolution.- p.205–226, In: Stober, I., K. Bucher (eds.): Hydrogeology of Crystalline Rocks, KLUWER Academic Publishers, 275 p., Dordrecht Boston London.Google Scholar
  12. Parkhurst D. L., Thorstenson D. C., Plummer L. N. (1980): PHREEQE - a computer program for geochemical calculations. Water Resources Investigations, 80–96, 210 pp., U.S. Geological Survey.Google Scholar
  13. Stober, I., (1995): Die Wasserführung des kristallinen Grundgebirge. Enke Verlag, Stuttgart. 191pp.Google Scholar
  14. Stober, I., Bucher, K. (1999a): Deep groundwater in the crystalline basement of the Black Forest region. Appl. Geochem. 14, 237–254.CrossRefGoogle Scholar
  15. Stober, I., Bucher, K. (1999b): Origin of salinity of deep groundwater in crystalline rocks.- Terra Nova, vol. 11, no. 4, 181–185.CrossRefGoogle Scholar
  16. Thury, M., Gautschi, A., Mazurek, M., Müller, W. H., Naef, H., Pearson, F. J., Vomvoris, S., Wilson, W. (1994): Geology and Hydrogeology of the Crystalline Basement of Northern Switzerland. Synthesis of Regional Investigations 1981–1993 within the Nagra Radioactive Waste Disposal Programme. Nagra, Technical Report 93-01, 1–347.Google Scholar
  17. Yardley, B.W.D., Banks, D.A., Munz , L.A. (1992): Halogen composition of fluid inclusions as tracers of crustal fluid behaviour.-Water-Rock Interaction, Kharaka & Maest (eds.), pp. 1137–1140.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Ingrid Stober
    • 1
  • Yinian Zhu
    • 2
  • Kurt Bucher
    • 2
  1. 1.Geological SurveyFreiburgGermany
  2. 2.Institute of Mineralogy, Petrology and GeochemistryUniversität FreiburgFreiburgGermany

Personalised recommendations