Advertisement

A combined isotopic tool box for the investigation of water-rock interaction: An overview of Sr, B, O, H isotopes and U-series in deep groundwaters from the Vienne granitoid (France)

  • Ph. Négrel
  • J. Casanova
  • W. Kloppmann
  • J. F. Aranyossy
Part of the Water Science and Technology Library book series (WSTL, volume 40)

Abstract

An “isotopic toolbox” comprising strontium, stable boron, oxygen and hydrogen isotopes as well as the uranium series has been used to place constraints on the origin deep groundwaters from the crystalline basement of the Vienne region in France.

For deep groundwaters from the Vienne granitoid, the conclusions drawn from Sr and B isotope compositions converge towards a marine origin modified by water rock interaction (WRI). The B isotope (δ11B) compositions of the most saline waters lie close to those of present-day seawater while the 87Sr/86Sr ratios are slightly higher than those of the Jurassic ocean (i.e. the last transgressive episode) as a result of subsequent WRI. This is in agreement with a model developed to determine the 87Sr/86Sr ratio of water after interaction with granitoid. The stable O-H isotope data suggest that, as is the case for waters from many crystalline shields, WRI under low temperature-low porosity conditions has modified the 18O and/or 2H compositions of the liquid phase. Example where 234U has been preferentially mobilised relative to 238U is presented and discussed in relation to two main processes of U mobility: preferential solution related to oxidative paleo-events in the upper zone (0 – 400m depth) of the site and alpha-recoil induced solution in the lower zone (400 – 900m).

Keywords

Total Dissolve Solid Isotopic Fractionation Shallow Groundwater Deep Groundwater Strontium Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, J.K., Palmer, M.R., Bullen, T.D., Arnórsson, S., Ragnarsdóttir, K.V. 2000. The boron isotope systematics of Icelandic geothermal waters : 1. Meteoric water charged system. Geochim. Cosmochim. Acta 64, 579–585.CrossRefGoogle Scholar
  2. Albarède, F, Michard, A. 1987. Evidence for slowly changing 87Sr/86Sr in runoff from freshwater limestones of southern France. Chem. Geol., 64, 55–65.CrossRefGoogle Scholar
  3. Andersson, P.S., Wasserburg, G.J., Ingri, J. 1994. The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planet. Sci. Lett., 113, 459–472.CrossRefGoogle Scholar
  4. Andrews, J.N., Ford, D.J, Hussain, N., Trivedi D.,.Youngman, M.J. 1989. Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochimica et Cosmochimica Acta. 53, 1791–1802.CrossRefGoogle Scholar
  5. Barth, S.R. 2000. Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine foreland. App. Geochem. 15, 937–952.CrossRefGoogle Scholar
  6. Barth, S.R. 1993. Boron isotope variations in nature: a synthesis, Geol. Rundsch, 82, 640–651.CrossRefGoogle Scholar
  7. Beaucaire, C., Gassama, N., Tresonne, N., Louvat, D. 1999. Saline groundwaters in the hercynian granites (Chardon Mine, France): geochemical evidence for the salinity origin. App. Geochem. 14, 67–84.CrossRefGoogle Scholar
  8. Blomqvist, R., Lahermo, P.W., Lahtinen, R., Halonen, S. 1989. Geochemical profiles of deep groundwater in Precambrian Bedrock in Finland. In G.D. Garland (ed.): Proceedings of Exploration ’87. Third Decennial International Conference on Geophysical and Geochemical Exploration for Minerals and Groundwater, Ontario Geological Survey, Special Volume 3, 746–757.Google Scholar
  9. Bottomley, D.J., Gregoire, D., Raven, K.G. 1994. Saline groundwaters and brines in the Canadian shield: Geochemical and isotopic evidence for a residual evaporite brine component. Geochim Cosmochim. Acta, 58, 1483–1498.CrossRefGoogle Scholar
  10. Bottomley, D.J., Katz, A., Chan, L.H., Starinsky, A., Douglas, M., Clark, I.D., Raven, K.G. (1999) The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chem. Geol., 155, 295–320.CrossRefGoogle Scholar
  11. Brantley, S.L., Chesley, J.T., Stillings, L.L. 1998. Isotopic ratios and release rates of strontium measured from weathering feldspars. Geochim. Cosmochim. Acta, 62, 1493–1500.CrossRefGoogle Scholar
  12. Bullen, T., White, A., Blum, A., Harden, J., Schulz, M. 1997. Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behaviour of strontium. Geochim. Cosmochim. Acta, 61, 291–306.CrossRefGoogle Scholar
  13. Bruland, K.W. 1983. Trace elements in seawater. In Riley, J.P. and Chester, R (Eds.). Chemical Oceanography, vol8. Academic Press (London), 157–220.Google Scholar
  14. Capdeville, J.P., Floc’h, J.P., Lougnon, J., Recoing, M. 1983. Carte géologique de la France a 1/50000, feuille Confolens. Notice de la carte géologique, 32p. BRGM Ed., Orléans.Google Scholar
  15. Casanova, J. and Aranyossy, J.F. (1998). Uranium series isotopic data of fracture infill materials from the potential underground laboratory site in the Vienne granitoids, France. In Water-rock Interactions, Arehart & Hulston (eds.), Balkena, Rotterdam. WRI9, 965–967.Google Scholar
  16. Casanova, J., Négrel, Ph., Kloppmann, W., Aranyossy, J.F. In press. Origin of deep saline groundwaters in the Vienne Granitoids (France): Constrains inferred from Boron and Strontium Isotopes. Geofluids.Google Scholar
  17. Casanova, J., Négrel, Ph., Kaija, J., Blomqvist, R. 1998. Constraints added by the strontium and boron isotopes on the geochemical characterization of the Palmottu hydrosystem. Goldschimdt Conference, Toulouse, 1998. Mineralogical Magazine, volume 62A, 278–279.Google Scholar
  18. Casanova, J., Négrel, Ph., Frape, S., Kaija, J., Blomqvist, R. 1999a. Multi isotopes geochemistry of the Palmottu hydrosystem (Finland). In Geochemistry of the Earth’s Surface (Armannsson Ed.), Balkema, Rotterdam. 483–486.Google Scholar
  19. Casanova, J., Machard de Gramont, H., Kloppmann, W., Négrel, Ph. 1999b. Boron and strontium isotopic geochemistry of the Wadi Ahin catchment (Sultanate of Oman). European Union of Geosciences Strasbourg, 1999, J. of Conference Abstracts, vol 4, n°l, p 557.Google Scholar
  20. Faure, G. 1986. Principles of Isotope Geology. John Wiley & Sons. 589 p.Google Scholar
  21. Franklyn, M.T, McNutt, R.H, Kamineni, D.C, Gascoyne, M, Frape, S.K. 1991. Groundwater 87Sr/86Sr values in the Eye-Dashwa Lakes pluton, Canada : Evidence for plagioclase-water reaction. Chem. Geol. (Isotope Geoscience Section), 86, 111–122.CrossRefGoogle Scholar
  22. Frape, S.K., Fritz, P. 1982 The Chemistry and Isotopic Composition of Saline Groundwaters from the Sudbury Basin, Ontario. Canadian Journal of Earth Sciences 19, 4, 645–661.CrossRefGoogle Scholar
  23. Fritz, P. and Frape, S.K., 1987. Saline waters and gases in crystalline rocks. Geological Association of Canada, Special Paper 33, 245p.Google Scholar
  24. Gaillardet, J., Dupré, B., Allegre, C.J., Négrel, Ph. 1997. Chemical and physical denudation in the Amazon River Basin. Chem. Geol., 142, 141–173.CrossRefGoogle Scholar
  25. Hantzpergue, P., Branger, P., Ducloux, J., Lemordant, Y., Joubert, J.M., Tournepiche, J.F. 1997. Carte géologique de la France a 1/50000, feuille Civray. Notice de la carte géologique, 41p. BRGM Ed., Orléans.Google Scholar
  26. Kloppmann, W., Négrel, Ph., Casanova, J. 1999a. A combined isotopic tool for water-rock interaction studies : B, Sr, O, H isotopes in groundwater. In International Symposium on Isotope Techniques in Water Resources Development and Management, Vienne, Autriche, 10-14 mai 1999, IAEA-SM-361/38, 84–86.Google Scholar
  27. Kloppmann, W., Négrel, Ph., Casanova, J., Guerrot, C. 1999b. Boron and Strontium isotopes in saline groundwaters in the North German Basin (Gorleben diapir). European Union of Geosciences Strasbourg, 1999, J. of Conference Abstracts, vol 4, n°l, p 584.Google Scholar
  28. Kloppmann, W., Girard J.P., Aranyossy J.F. Exotic stable isotope compositions in saline waters and brines from the crystalline basement: Literature review and a new example from French granites. Submitted to Geofluids.Google Scholar
  29. Komor, S.C. 1997. Boron contents and isotopic compositions of hog manure, selected fertilizers and water in Minnesota. J. Environ. Qual., 26, 1212–1222.CrossRefGoogle Scholar
  30. Krimissa, M. 1995. Application des méthodes isotopiques à l’étude des eaux thermales en milieu granitique (Pyrénées, France). Ph.D. Thesis, Paris XI, 248p.Google Scholar
  31. Kronfeld, J. 1974. Uranium deposition and Th-234 alpha-recoil : an explanation for extreme U-234 fractionation within the Trinity aquifer. Earth Planet. Sci. Let., 21, 327–330.CrossRefGoogle Scholar
  32. Langmuir, D., 1978. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposit. Geochim. Cosmochim. Acta, 42, 547–569.CrossRefGoogle Scholar
  33. Langmuir, D. and Herman, J.S., 1980. The mobility of thorium in natural waters at low temperatures. Geochim. Cosmochim. Acta, 44, 1753–1766.CrossRefGoogle Scholar
  34. Matray, J.M., Gadalia, A., Aquilina, L., Kloppmann, W., Lemière, B., Négrel, Ph. 1998. Site de la Vienne, synthèse des reconnaissances hydrogéochimiques. DRPOANT 97-067A, 117p.Google Scholar
  35. Mossadik, H. 1997. Les isotopes du bore, traceurs naturels dans les eaux : Mise au point de l’analyse en spectrométrie de masse à source solide et applications à différents environnements. PhD Thesis, Univ. Orleans, 224p.Google Scholar
  36. Mourier, J.P., Floc’h, J.P., Coubes, L. 1989. Carte géologique de la France a 1/50000, feuille L’Isle-Jourdain. Notice de la carte géologique, 73p. BRGM Ed., Orléans.Google Scholar
  37. Négrel, Ph., Allegre, C.J., Dupré, B., Lewin, E.. 1993. Erosion sources determined from inversion of major, trace element ratios and strontium isotopic ratio in river water : the Congo Basin case. Earth and Planet. Sci. Lett., 120, 59–76.CrossRefGoogle Scholar
  38. Négrel, Ph., Fouillac, C., Brach, M. 1997a. A strontium isotopic study of mineral and surface waters from the Cézallier (Massif Central, France): implications for the mixing processes in areas of disseminate emergences of mineral waters. Chem. Geol., 135, 89–101.CrossRefGoogle Scholar
  39. Négrel, Ph, Casanova, J., Aranyossy, J.F., 1997b. Strontium Isotopic Characterization of Groundwaters and Calcites from the Potential Underground Laboratory Site in the Vienne Granitoids (France). Goldschimdt Conference, Tucson, 1997. J. of Conference Abstracts, 1, p 149.Google Scholar
  40. Négrel, Ph., Casanova, J., Guerrot, C., Cocherie, A., Azaroual, M., Fouillac, Ch. 1999a. Isotopes geochemistry in thermo-mineral waters in the Massif Central(France). In Geochemistry of the Earth’s Surface (Armannsson Ed.), Balkema, Rotterdam. 531–534.Google Scholar
  41. Négrel, Ph., Casanova, J., Kloppmann, W., Aranyossy, J.F. 1999b. Origin of deep saline groundwaters in the Vienne granitoids (France); constraints inferred from strontium and boron isotopes. European Union Strasbourg, 1999, J. of Conference Abstracts, vol 4, n°l, p 520.Google Scholar
  42. Négrel, Ph., Casanova, J., Aranyossy, J.F. In press. Strontium isotope studying the origin of fluids in the Vienne Granitoids, France. Chem. Geol.Google Scholar
  43. Osmond, J.K., Ivanovich, M.1992. Uranium-series mobilization and surface hydrology. In M. Ivanovich & R.S. Harmon (eds), Uranium series disequilibrium: application to environmental problems, 259–289, Clarendon Press, Oxford.Google Scholar
  44. Osmond, J.K., Cowart, B. 1992. Ground water. In M. Ivanovich & R.S. Harmon (eds), Uranium series disequilibrium: application to environmental problems, 290–333, Clarendon Press, Oxford.Google Scholar
  45. Palmer, M.R., Spivack, A.J., Edmond, J.M. 1987. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay, Geochim. Cosmochim. Acta 51, 2319–2323.CrossRefGoogle Scholar
  46. Seimbille, F., Zuddas, P., Michard, G. 1998. Granite-hydrothermal interaction : a simultaneous estimation of the mineral dissolution rate based on the isotopic doping technique. Earth and Planet. Sci. Lett., 157, 183–191.CrossRefGoogle Scholar
  47. Suksi, U.J., Pitkänen, P., Ruskeeniemi, T., Rasilainen, K., Casanova, J. 2001. Uranium-series disequilibrium indicting oxygen intrusion in rocks. Tenth International Symposium on Water Rock Interaction, Villasimius, Italy, June 10-15, 2001, submitted.Google Scholar
  48. Vengosh, A., Chivas, A.R, McCulloch, M.T., Starisnky, A., Kolodny Y. 1991a. Boron isotope geochemistry of Australian salt lakes, Geochim. Cosmochim. Acta 55, 2591–2606CrossRefGoogle Scholar
  49. Vengosh, A., Kolodny, Y., Starisnky, A., Chivas ,A.R., McCulloch, M.T. 1991b. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates, Geochim. Cosmochim. Acta, 55, 2901–2910.CrossRefGoogle Scholar
  50. Vengosh A., Starisnky A., Kolodny Y., Chivas A.R. 1991c. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Geochim. Cosmochim. Acta 55, 1689–1695CrossRefGoogle Scholar
  51. Vengosh, A., 1992. Boron isotope variations during brine evolution and water-rock interactions. In Water-rock Interactions, Kharaka & Maest (eds.), Balkena, Rotterdam. WRI6, 965–967.Google Scholar
  52. Vengosh, A., 1998. Boron isotopes and groundwater pollution. Water & Environ. News, 3, 15–16.Google Scholar
  53. Zuddas, P., Seimbille, F., Michard, G. 1995. Granite-fluid interaction at near equilibrium conditions : experimental and theoretical constraints from Sr contents and isotopic ratios. Chem. Geol., 121, 145–154.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Ph. Négrel
    • 1
  • J. Casanova
    • 1
  • W. Kloppmann
    • 1
  • J. F. Aranyossy
    • 2
  1. 1.Water DepartmentBRGMOrléans Cedex 2France
  2. 2.ANDRAChâtenay-MalabryFrance

Personalised recommendations