Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 50))

  • 300 Accesses

Abstract

Quantum-dot devices consist of a small electronic island connected by tunnel barriers to source and drain electrodes [1]. Due to on-site Coulomb repulsion, the addition of an electron to the island implies an energy change U=e 2/C, where C is the total capacitance of the island. Hence the number of confined electrons is a well-defined integer, N, that can be controlled by varying the voltage on a nearby gate electrode. Transport of electrons through the dot is allowed only at the transition points where the N- and (N+1)-states are both energetically accessible. Otherwise, N is constant and current transport is strongly suppressed. As a result, the linear conductance as a function of gate voltage exhibits a sequence of narrow resonances located at the transitions between consecutive electron numbers. This is known as Coulomb blockade [2,3]. If the tunnel conductance of the barriers, G t is much smaller than the quantum conductance, e 2/h, transport can be well described in terms of single-electron processes, which are first-order in G t . As Gt approaches ∼ e 2/h, however, higher-order tunneling events need to be taken into account. These are commonly known as co-tunneling events since they involve the simultaneous coherent tunneling of two or more electrons [4]. In the case of spin-less electrons, the co-tunneling contribution to conductance can be evaluated by perturbation theory. The leading term is a second-order in G t. A more complicated scenario occurs when the spin degree of freedom is taken into account. If the total spin of the quantum dot is non-zero, the coherent superposition of virtual tunnel events can result in a strong correlation between the localised electrons and the free electrons in the leads. The physics of a quantum dot becomes similar to the physics of a magnetic impurity in a metal host, i.e. the Kondo effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.P. Kouwenhoven et al., in Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven, and G. Schön, (Kluwer, Series E 345, 1997), p. 105.

    Google Scholar 

  2. D.V. Averin and K.K. Likharev, in Mesoscopic Phenomena in Solids, edited by B.L. Altshuler et al., (Elsevier, Amsterdam, 1991), p. 173.

    Chapter  Google Scholar 

  3. C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  4. D.V. Averin and Yu. V. Nazarov, in Single Charge Tunneling — Coulomb Blockade Phenomena in Nanostructures, edited by H. Grabert and M.H. Devoret (Plenum Press, New York, 1992), p. 217.

    Google Scholar 

  5. J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

    Article  ADS  Google Scholar 

  6. A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).

    Book  Google Scholar 

  7. D.L. Cox and M.B. Maple, Physics Today 48, 32 (1995).

    Article  Google Scholar 

  8. G.A. Prinz, Science 282, 1660–1663 (1998).

    Article  Google Scholar 

  9. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Article  ADS  Google Scholar 

  10. D. Goldhaber-Gordon et al., Nature 391, 156 (1998).

    Article  ADS  Google Scholar 

  11. S.M. Cronenwett, T.H. Oosterkamp, and L.P. Kouwenhoven, Science 281, 540 (1998).

    Article  ADS  Google Scholar 

  12. J. Schmid et al., Physica B 256-258, 182 (1998).

    Article  ADS  Google Scholar 

  13. F. Simmel et al., Phys. Rev. Lett. 83, 804 (1999).

    Article  ADS  Google Scholar 

  14. L.I. Glazman, and M.E. Raikh, JETP Lett. 47, 452 (1988).

    ADS  Google Scholar 

  15. T.K. Ng, and P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988).

    Article  ADS  Google Scholar 

  16. T. Inoshita et al., Phys. Rev. B 48, 14725 (1993).

    Article  ADS  Google Scholar 

  17. S. Tarucha et al., Phys. Rev. Lett. 84, 2485 (2000).

    Article  ADS  Google Scholar 

  18. D.C. Mattis, Phys. Rev. Lett. 19, 1478 (1967).

    Article  ADS  Google Scholar 

  19. P. Nozières and A. Blandin, J. Physique 41, 193 (1980).

    Google Scholar 

  20. Y. Wan, P. Phillips, and Q. Li, Phys. Rev. B 51, 14782 (1995).

    Article  ADS  Google Scholar 

  21. W. Izumida, O. Sakai, and Y. Shimizu, J. Phys. Soc. Jpn. 67, 2444 (1998).

    Article  ADS  Google Scholar 

  22. S.M. Maurer et al., Phys. Rev. Lett. 83, 1403 (1999).

    Article  ADS  Google Scholar 

  23. J. Schmid et al., Phys. Rev. Lett. 84, 5824 (2000).

    Article  ADS  Google Scholar 

  24. M. Eto and Yu. V. Nazarov, Phys. Rev. Lett. 85, 1306 (2000).

    Article  ADS  Google Scholar 

  25. D.G. Austing et al., Phys. Rev. B 60, 11514 (1999).

    Article  ADS  Google Scholar 

  26. M. Pustilnik, Y. Avishai, and K. Kikoin, Phys. Rev. Lett. 84, 1756 (2000).

    Article  ADS  Google Scholar 

  27. D. Giuliano and A. Tagliacozzo, Phys. Rev. Lett. 84, 4677 (2000).

    Article  ADS  Google Scholar 

  28. The top contact is obtained by deposition of Au/Ge and annealing at 400 °C for 30 s. This thermal treatment is gentle enough to prevent the formation of defects near the dot, but does not allow the complete suppression of the native Schottky barrier. The residual barrier leads to electronic confinement and corresponding charging effects in the GaAs pillar.

    Google Scholar 

  29. N.S. Wingreen and Y. Meir, Phys. Rev. B 49, 11040 (1994).

    Article  ADS  Google Scholar 

  30. Y. Funabashi et al., Jpn. J. Appl. Phys. 38, 388 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Franceschi, S. et al. (2001). Electron Transport Through Quantum Dots: An Unusual Kondo Effect. In: Chandrasekhar, V., Van Haesendonck, C., Zawadowski, A. (eds) Kondo Effect and Dephasing in Low-Dimensional Metallic Systems. NATO Science Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0427-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0427-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0401-8

  • Online ISBN: 978-94-010-0427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics