Skip to main content

Turbulence and Financial Market Data Analyzed with Respect to Their Scale Dependent Complexity

  • Chapter
  • 169 Accesses

Part of the book series: NATO Science Series ((NAII,volume 63))

Abstract

Complex systems with a high degree of disorder are tradition- ally analyzed by means of multiscaling behavior of a scale dependent mea- sure. Here we present a new analysis based on scale dependent nonlinear stochastic processes. With these processes a more complete characteriza- tion of the complexity is achieved, namely, instead of characterizing the statistics of the scale dependent disorder on different scales separately, the knowledge of a stochastic process provides the complete stochastic infor- mation of the simultaneous occurrence of different disordered structures on all scales. Furthermore, we show how to reconstruct from given data the equations governing the stochastic processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badii, R. and Politi, A. (1997). Complexity. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  2. Douchaud, J.-P., Potters, M., and Meyer, M. (2000). Apparent multifractality in financial time series. The European Phys. Journal B 13, 595–599.

    ADS  Google Scholar 

  3. Bouchard, J-P. (2001). Power laws in economics and finance: some ideas from physics. Quantitative Finance 1, 105–112.

    Article  Google Scholar 

  4. Dubrulle, B. (2000). Affine turbulence.Eur. Phys. J. B 13, 1.

    Article  ADS  Google Scholar 

  5. Priedrich, R., Galla, Th., Naert, A., Peinke, J., and Schimmel, Th. (1998). Disordered Structures Analyzed by the Theory of Markov Processes, in Parisi, J., Müller, St. C, and Zimmermann, W. editors, Lecture Notes in Physics 503, A Perspective Look at Nonlinear Media. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  6. Priedrich R., Zeller J.& Peinke J. (1998a) A note on the three-point statistics of velocity increments in turbulence, Europhys. Lett. 41, 143.

    Google Scholar 

  7. Friedrich, R., Peinke, J., and Renner, Ch. (2000a). How to quantify deterministic and random influences cn the statistics of the foreign exchange market. Phys. Rev. Lett. 84, 5224–5227.

    Article  ADS  Google Scholar 

  8. Friedrich, R., Siegert, S., Peinke, J., Lück, St., Siefert, M., Lindemann, M., Raethjen, J., Deuschl, G., and Pfister, G. (2000). Extracting model equations from experimental data Phys. Lett. A 271, 217–222.

    Article  ADS  Google Scholar 

  9. Frisch, U. (1995). Turbulence. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  10. Gardiner, C. W. (1985). Handbook of Stochastic Methods. 2nd edition. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  11. Ghashghaie, S., Breymann, W., Peinke, J., Talkner, P., and Dodge, Y. (1981). Turbulent Cascades in Foreign Exchange Markets Nature 381, 767–770.

    Article  ADS  Google Scholar 

  12. Haken, H. (1988). Information and Self-Organization. Springer, Berlin, Heidelberg, New York etc.

    MATH  Google Scholar 

  13. Hänggi, P. and Thomas, H. (1982). Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88, 4, 207–319.

    Article  ADS  Google Scholar 

  14. Honerkamp, J. (1998). Statistical Physics. Springer, Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  15. Kolmogorov, A.N. (1931). Über die analytischen Methoden in der Wahrschein- lichkeitsrechnung. Mathematische Annalen 104, 415–458.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mandelbrot, B. B. (2001). Scaling in financial prices: I. Tails and dependence; II. Multifractals and the star equation. Quantitative Finance 1, 113–130.

    Article  MathSciNet  Google Scholar 

  17. Mantegna, R.N., Stanley, H.E. (1995). Nature 376, 46–49.

    Article  ADS  Google Scholar 

  18. McCauley, J. (2000). The Futility of Utility: how market dynamics marginalize Adam Smith. Physica A 285, 506–538.

    Article  ADS  MATH  Google Scholar 

  19. Muzy, J-F., Sornette, D., Delour, J., and Areneodo, A. (2001). Multifractal returns and hierarchical portfolio theory. Quantitative Finance 1, 131–148.

    Article  MathSciNet  Google Scholar 

  20. Renner, Ch., Peinke, J., and Friedrich, R. (2000). Experimental indications for Markov properties of small scale turbulence. J. Fluid Mech 433, 383–409.

    ADS  Google Scholar 

  21. Renner, Ch., Peinke, J., and Friedrich, R. (2001). Markov properties of high frequency exchange rate data. Physica A 298, 499–520.

    Article  ADS  MATH  Google Scholar 

  22. Renner, Ch.,et. al. (2001). On the universality of high Reynolds number turbulence. to be published.

    Google Scholar 

  23. Risken, H. (1989). The Fokker-Planck Equation. Springer, Berlin, Heidelberg, New York.

    Book  MATH  Google Scholar 

  24. Siegert, S., Friedrich, R., and Peinke, J. (1998). Analysis of data sets of stochastic systems. Physics Letter A, 243, 275–280.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Sreenivasan, K. R., and Antonia, R. A. (1997). The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472.

    Article  MathSciNet  ADS  Google Scholar 

  26. van Kampen, N. G. (1981). Stochastic processes in physics and chemistry. North- Holland Publishing Company, Amsterdam.

    MATH  Google Scholar 

  27. Viscek, T. (1992). Fractal Growth Phenomena. World Scientific, Singapore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peinke, J., Renner, C., Friedrich, R. (2002). Turbulence and Financial Market Data Analyzed with Respect to Their Scale Dependent Complexity. In: Skjeltorp, A.T., Vicsek, T. (eds) Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations. NATO Science Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0419-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0419-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0634-0

  • Online ISBN: 978-94-010-0419-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics