Advertisement

Effects of Interaction between Surface Water and Groundwater on Groundwater Flow and Quality Beneath Urban Areas

  • T. Grischek
  • A. Foley
  • D. Schoenheinz
  • B. Gutt
Chapter
Part of the Nato Science Series book series (NAIV, volume 8)

Abstract

Processes and problems associated with the interaction between rivers, lakes, wetlands and groundwater in the urban environment are described. Typical forms of surface water/aquifer interaction are identified, as well as commonly associated management problems. Case studies from Germany and the U.S. are used to highlight specific phenomena. A number of recommendations, solutions, and considerations required for effective management of urban groundwater are presented.

Keywords

Hydraulic Conductivity Groundwater Level Groundwater Flow Bank Filtration Alluvial Aquifer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruce, B.W. and McMahon, P.B. (1996) Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA, J. Hydrol 186,129–151.CrossRefGoogle Scholar
  2. 2.
    Lerner, D. (1996) Urban groundwater – An asset for the sustainable city? Europ. Wat. Poll. Control 6(5), 43–51.Google Scholar
  3. 3.
    Phien-wej, N., Giao P.H., and Nutalya, P. (1998) Field experiment of artificial recharge through a well with reference to land subsidence control, Engineering Geology 50(1–2), 187–201.CrossRefGoogle Scholar
  4. 4.
    Rahman, A., Lee, H.K., and Khan, M.A (1997) Domestic water contamination in rapidly growing megacities of Asia: Case of Karachi, Pakistan, Environmental Monitoring and Assessment 44(1–3), 339–360.CrossRefGoogle Scholar
  5. 5.
    Verstraelen, P.J.T., Scheffer-Ligtermoet, Y., Koeleman, R.B., and Van Alphen, J.C.A. (1990) Urban water quality in relation to combined sewer overflow and stormwater runoff in Amstel-en Gooiland, in H. Massing, J. Packman, and F. Zuidema (eds.), Hydrological Processes and Water Management in Urban Areas, IAHS Publ. No. 198, pp. 217–223.Google Scholar
  6. 6.
    Sharp, J.M. (1988) Alluvial aquifers along major rivers, in W. Back, J.S. Rosenshein, and P.R. Seaber (eds.), The Geology of North America, vol. 02, Hydrogeology, The Geological Society of America.Google Scholar
  7. 7.
    Kehew, A.E., Passero, A., Krishnamurthy, R.V., Lovett, C. K., Betts, M.A., and Dayharsh, B.A. (1998) Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, Southwestern Michigan, Groundwater 36(5), 849–856.CrossRefGoogle Scholar
  8. 8.
    Grasby, S.E., Hutcheon, I., and McFarland, L (1999) Surface-water-ground water interaction and the influence of ion exchange reactions on river chemistry, Geology 27(3), 223–226.CrossRefGoogle Scholar
  9. 9.
    Montenegro, H., Hohlfelder, T., and Wawra, B. (2000) Modellierung der Austauschprozesse zwischen Oberflächen- und Grundwasser in Flußauen (Modeling of exchange processes between surface water and groundwater in floodplains), in Friese et al. (eds.), Stoffhaushalt in Auenökosystemen, Springer, Berlin, pp. 89–98.CrossRefGoogle Scholar
  10. 10.
    Woessner, W.W. (1998) Changing views of stream-groundwater interaction, in Brahana et al. (eds.), Gambling with Groundwater — Physical, Chemiealand Biological Aspects of Aquifer -Stream Relations, Am. Inst. Hydrol., St. Paul, Minnesota, USA, pp. 1–6.Google Scholar
  11. 11.
    Fraser, B.G. and Williams, D.D. (1998) Seasonal boundary dynamics of a groundwater/surfacewater ecotone, Ecology 79, 2019–2031.Google Scholar
  12. 12.
    Harvey, J.W. and Bencala, K.E. (1993) The effect of streambed topography on surface-subsurface water exchange in mountain catchments, Wat. Res. Res. 29, 89–98.CrossRefGoogle Scholar
  13. 13.
    Castro, N.M. and Hornberger, G.M. (1991) Surface-subsurface water interactions in an alluviated mountain stream channel, Wat. Res. Res. 27, 1613–1621.CrossRefGoogle Scholar
  14. 14.
    Giebel, H. and Hommes, A. (1988) Zum Austauschvorgang zwischen Fluß- und Grundwasser —Weitergehende Auswertungen aus dem Neuwieder Becken, (Exchange processes between river water and groundwater in the Neuwieder basin), Deutsche Gewässerkundliche Mitteilungen 32, 18–27.Google Scholar
  15. 15.
    Vervier, P., Dobson, M., and Pinay, G. (1993) Role of interaction zones between surface and ground waters in DOC transport and processing: considerations for river restoration, Freshwat. Biol. 29, 275–284.CrossRefGoogle Scholar
  16. 16.
    Rouch, R., Mangin, A., Bakalowicz, M., and D’Hulst, D. (1997) The hyporheic zone: hydrogeological and geochemical study of a stream in the Pyrenees mountains, Int. Revue ges. Hydrobiol. 82(3), 357–378.CrossRefGoogle Scholar
  17. 17.
    Holmes, R.M., Fisher, S.G., and Grimm, N.B. (1994) Nitrogen dynamics along parafluvial flowpaths: importance to the stream ecosystem, in J. Stanford (eds.), Groundwater Ecology, Proc. 2nd Int. Conf. Groundwater Ecology, Atlanta, pp. 47–56.Google Scholar
  18. 18.
    Grannemann, N.G. and Sharp, J.M. (1979) Alluvial hydrogeology of the lower Missouri river valley, J. Hydrol. 40, 85–99.CrossRefGoogle Scholar
  19. 19.
    Carey, M.A. and Chadha, D. (1998) Modelling the hydraulic relationship between the River Derwent and the Corallian Limestone aquifer, Quarterly J. Engineering Geology 31(1), 63–72.CrossRefGoogle Scholar
  20. 20.
    Appleyard, S.J., Davidson, W.A., and Commander, D.P. (1999) The effects of urban development on the utilisation of groundwater resources in Perth, Western Australia, in Chilton et al. (eds.), Groundwater in the Urban Environment: Selected City Profiles, Balkema, Rotterdam, pp. 97–104.Google Scholar
  21. 21.
    Owen, C.R. (1995) Water budget and flow patterns in an urban wetland, J. Hydrol. 169(1–4), 171–187.CrossRefGoogle Scholar
  22. 22.
    Owen, C.R. (1998) Hydrology and history: Land use changes and ecological responses in an urban wetland. Wetlands Ecology and Management 6(4), 209–219.CrossRefGoogle Scholar
  23. 23.
    Hvitved-Jacobsen, T. and Jensen, S. (1990) Integrated measures for the reduction of storm water and combined sewer overflow impact on an urban lake, in H. Massing, J. Packman, and F. Zuidema (eds.), Hydrological Processes and Water Management in Urban Areas, IAHS Publ. No. 198, pp. 163–173.Google Scholar
  24. 24.
    Panno, S.V., Krapac, I.G., Nuzzo, V.A., Cartwright, K., and Hensel, BR. (1999) Impact of urban development on the chemical composition of groundwater in a fen-wetland complex, Wetlands 19(1), 236–245.CrossRefGoogle Scholar
  25. 25.
    Dinu, I., Albu, M., Moldoveanu, V., and Nash, H. (1997) Groundwater supply of Slatina city endangered by contaminants fromt the River Olt, Romania, in Chilton et al. (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 389–394.Google Scholar
  26. 26.
    Mukherjee, G. (1990) Wetland management in the context of regional planning, East Calcutta — A case study, in H. Massing, J. Packman, and F. Zuidema (eds.), Hydrological Processes and Water Management in Urban Areas, IAHS Publ. No. 198, pp. 341–345.Google Scholar
  27. 27.
    Jacobson, G. (1996) CSIRO Urban Groundwater Database entry for Kathmandu, Nepal, Urban Groundwater Database, http://www.clw.csiro.au/UGD
  28. 28.
    Lok, K. (1999) CSIRO Urban Groundwater Database entry for Lima, Peru, Urban Groundwater Database, http://www.clw.csiro.au/UGD
  29. 29.
    Dassargues, A. (1997) Groundwater modelling to predict the impact of a tunnel on the behaviour of a water table aquifer in urban conditions, in Chilton et al. (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 225–230.Google Scholar
  30. 30.
    Mikulic, Z. (1997) Falling groundwater levels of Ljubljana aquifer, in Chilton et al. (eds.) Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 345–348Google Scholar
  31. 31.
    Lloyd, J.W. (1997) Estuarine barrages and their influence on groundwater, J. Hydrol. 162, 247–265.CrossRefGoogle Scholar
  32. 32.
    Ortega-Guerrero, A., Rudolph, D.L., and Cherry, J.A. (1999) Analysis of long term land subsidence near Mexico City: field investigations and predicitive modelling, Wat. Res. Res. 35(11), 3327–3341.CrossRefGoogle Scholar
  33. 33.
    Morrill, P. (1998) CSIRO Urban Groundwater Database entry for Tokyo, Japan, Urban Groundwater Database, http://www.clw.csiro.au/UGD
  34. 34.
    Clarke, J.S. and West, C.T. (1998) Interstate groundwater flow in the vicinity of the Savannah River site, Georgia and South Carolina, USA, in Brahana et al. (eds.), Gambling with Groundwater —Physical, Chemical and Biological Aspects of Aquifer-Stream Relations, Am. Inst. Hydrol., St. Paul, Minnesota, USA, pp. 735–745.Google Scholar
  35. 35.
    Amer, A.M., Sherif, M.M., and Masuch, D. (1997) Groundwater rise in Greater Cairo: Cause and effects on antiquities, in Chilton et al. (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 213–217.Google Scholar
  36. 36.
    Zaisheng, H. (1997) Groundwater for urban water supply in northern China, in Chilton et al. (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 331–334.Google Scholar
  37. 37.
    Dreher, J. (1991) Groundwater management in the city of Vienna after construction of the new hydropower plant on the Danube River — a case study, in H.P. Nachtnebel and K. Kovar (eds.), Hydrological basis of ecologically sound management of soil and groundwater, IAHS Publ. No. 202, pp. 347–356.Google Scholar
  38. 38.
    Grischek, T., Macheleidt, W., and Nestler, W. (2000) Hydrochemische Erfassung des Stoffaustausches zwischen Oberflächenwasser und Grundwasser in der Torgauer Elbaue (Hydrochemical investigation of mass exchange between surface water and groundwater in the Torgau basin of the River Elbe), in Friese et al (eds.), Stoffhaushalt in Auenökosysteme, Springer, Berlin, Heidelberg, New York, pp. 119–128.CrossRefGoogle Scholar
  39. 39.
    Fritz, B., Sommer-von Jarmerstedt, C., Pekdeger, A., Wischnack, S., and Jekel, M. (2000) Investigations of trace elements for the assessment of sustainable water supply, in Sililo et al (eds.), Groundwater: Past Achievements and Future Challenges, Balkema, Rotterdam, pp. 929–933.Google Scholar
  40. 40.
    Kayabali, K., Kocbay, A., Celik, M., Karatosun, H., and Arigun, Z. (1999) The influence of a heavily polluted urban river on the adjacent aquifer system, Environmental Geology 38(3), 233–243.CrossRefGoogle Scholar
  41. 41.
    Vujasinovic, S., Matic, I., Lozajic, A., and Stevanovic, Z. (1998) An example of groundwater contamination by phenols caused by polluted river water, Yugoslavia, in Brahana et al. (eds.), Gambling with Groundwater — Physical, Chemiealand Biological Aspects of Aquifer-Stream Relations, Am. Inst. Hydrol., St. Paul, Minnesota, USA, pp. 275–278.Google Scholar
  42. 42.
    Sommer-von Jarmerstedt, C., Fritz, B., and Pekdeger, A. (2000) Groundwater resources in Berlin, Germany: Will there be enough fresh water in the future? in Sililo et al (eds.), Groundwater: Past Achievements and Future Challenges, Balkema, Rotterdam, pp. 1043–1046.Google Scholar
  43. 43.
    Grischek, T., Nestler, W., Piechniczek, D., and Fischer, T. (1996) Urban groundwater in Dresden, Germany, Hydrogeology J. 4(1), 48–63.CrossRefGoogle Scholar
  44. 44.
    Dzhamalov, R.G. and Zlobina, V.L. (1997) Carbonate karst in the Moscow region and its development under urban conditions, in Sililo et al (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 127–130.Google Scholar
  45. 45.
    Schoenheinz, D. and Drewes, J.E. (2001) Groundwater flow modeling for the NWWRP Mesa, Proc. AWPCA conf., 2–4 May 2001, Mesa, Arizona.Google Scholar
  46. 46.
    Nestler, W., Kritzner, W., Grischek, T., and Dehnert, J. (1993) Das Beschaffenheitsüberwachungssystem für das Uferfiltrat der Sächsischen Elbe: Konzeption und Erfahrungen bei Entwurf, Bau und Betrieb (The monitoring system for the water quality of bank-filtered water of the River Elbe in Saxony), Wasser Boden 5, 53–58.Google Scholar
  47. 47.
    Schubert, J. (1999) Riverbank filtration — Field studies, modeling, monitoring, Proc. Int. Riverbank Filtration Conference, November 4–6, Louisville, Kentucky, 39–42.Google Scholar
  48. 48.
    Riemann, U. (1997) Engineering investigation and technological solutions for the groundwater lowering in the city of Dessau, Germany, in Chilton et al.  (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 255–259.Google Scholar
  49. 49.
    Nillert, P., Hoffknecht, A., Schäfer, D. and Ziesche, M. (1996) Groundwater monitoring and model prognosis, Geowissenschaften 14(3/4), 129–134.Google Scholar
  50. 50.
    Reichert, B. (1991) Anwendung natürlicher und künstlicher Tracer zur Abschätzung des Gefährdungspotentials bei der Wassergewinnung durch Uferfiltration (Application of natural and artificial tracers for risk estimation for water production by bank filtration), Schr. Angew. Geol Karlsruhe 13, Karlsruhe.Google Scholar
  51. 51.
    Trettin, R., Grischek, T., Strauch, G., Mallen, G., and Nestler, W. (1999) The suitability and usage of 18O and chloride as natural tracers for bank filtrate at the middle River Elbe, Isotopes Environ. Health Stud. 35, 331–350.CrossRefGoogle Scholar
  52. 52.
    Barrett, M.H., Lerner, D.N., Hiscock, K.M., Pedley, S.J., and Tellam, J.H. (1997) The use of marker species to establish the impact of the city of Nottingham, UK on the quantity and quality of its underlying groundwater, in Chilton et al. (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 85–90.Google Scholar
  53. 53.
    Sophocleous, M., Koussis, A., Martin, J.L., and Perkins, S.P. (1995) Evaluation of simplified stream aquifer depletion models for water rights administration, Ground Water 33(4), 579–588.CrossRefGoogle Scholar
  54. 54.
    Turin, HJ., Gaume, A.N., Bitner, M.J., Hansen, H.S., and Titus, F.B. (1997) Albuquerque, New Mexico, USA: A sunbelt city rapidly outgrowing its aquifer, in Chilton et al. (eds.), Groundwater in the Urban Environment: Problems, Processes and Management, Balkema, Rotterdam, pp. 677–680.Google Scholar
  55. 55.
    Litherathy, P. (1999) Riverbank filtration: Hungarian experience, Proc. Int. Riverbank Filtration Conference, November 4–6, Louisville, Kentucky, 29–32.Google Scholar
  56. 56.
    Sontheimer, H. (1991) Trinkwasser aus dem Rhein? (Drinking water from the River Rhine?), Academia Verlag, Sankt Augustin.Google Scholar
  57. 57.
    Rismal, M. and Kopac, I. (2000) River bank filtration as pre-treatment of river water for artificial recharge of groundwater for drinking water supply of the city of Maribor, Proc. Int. Riverbank Filtration Conference, November 2–4, Duesseldorf, Germany, 1–2.Google Scholar
  58. 58.
    Lendvay, J.M., Sauck, W.A., McCormick, M.L., Barcelona, M.J., Kampbell, D.H., Wilson, J.T., and Adriaens, P. (1998) Geophysical characterisation, redox zonation, and contaminant distribution at a groundwater/surface water interface, Wat. Res. Res. 34(12), 3545–3559.CrossRefGoogle Scholar
  59. 59.
    Howard, K.W.F., Beatty, B., Thompson, J., and Motkaluk, S. (2000) Advancing technologies in the hydrogeological design of urban subdivisions, in Sililo et al (eds.), Groundwater: Past Achievements and Future Challenges, Balkema, Rotterdam, pp. 947–952.Google Scholar
  60. 60.
    Ingerle, K., Hasenleithner, C, Herndl, G J., Schöller, F., and Sommer, R. (1999) Forschungsprojekt Uferfiltrat (Research Project Bank Filtration), Schriftenreihe der Forschung im Verbund 60, Ennskraft, Wien.Google Scholar
  61. 61.
    Appleyard, S.J. (2000) Current and future challenges for managing groundwater quality in Perth, Western Australia, in Sililo et al (eds.), Groundwater: Past Achievements and Future Challenges, Balkema, Rotterdam, pp. 869–872.Google Scholar
  62. 62.
    Newmann, P. (2001) Sustainable urban water systems in rich and poor cities — steps towards a new approach, Wat. Sci. Techn. 43(4), 93–99.Google Scholar
  63. 63.
    Novotny, V., Clark, D., Griffin, R.J., and Booth, D. (2001) Risk based urban watershed management under conflicting objectives, Wat. Sci. Techn. 43(5), 69–78.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • T. Grischek
    • 1
  • A. Foley
    • 1
  • D. Schoenheinz
    • 1
  • B. Gutt
    • 2
  1. 1.Institute for Water ChemistryDresden University of TechnologyDresdenGermany
  2. 2.Dresden Groundwater Consulting GmbHDresdenGermany

Personalised recommendations