Skip to main content

Long-Time-Scale Simulations of Al(100) Crystal Growth

  • Chapter
  • 420 Accesses

Part of the book series: NATO Science Series ((NAII,volume 65))

Abstract

We have carried out simulations of A1(100) crystal growth using a combination of classical dynamics simulations and a new long time scale simulation method based on harmonic transition state theory. Atoms are deposited using classical dynamics over a time interval of a few picoseconds, but once the system has thermalized, the long time interval in between deposition events, a millisecond, is simulated using an extension of the kinetic Monte Carlo method. Here, relevant transitions in the system are found on the fly and the need for a predetermined event table and lattice approximation are eliminated. For a given state of the system, the dimer method is used to search for the saddle points on the potential energy rim surrounding the local energy minimum. The Al(100) surface is found to grow remarkably smoothly, even at temperatures as low as 30 K. As multilayer structures start to form, low barrier events involving concerted displacement of a number of atoms tend to smoothen the surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eyring, H. (1935) The activated complex in chemical reactions, J. Chem. Phys. 3, pp. 107–115.

    Article  CAS  Google Scholar 

  2. Wigner, E. (1938) The transition-state method, Trans. Faraday Sac. 34, pp. 29–41.

    Article  CAS  Google Scholar 

  3. Keck, J.C (1967) The variational theory of reaction rates, Adv. Chem. 13, p. 85.

    Google Scholar 

  4. Pechukas, P. (1976) in Dynamics of Molecular Collisions, part B, edited by W. Miller. Plenum Press, NY.

    Google Scholar 

  5. Voter, A.F, and Doll, J.D. (1984) Transition-state theory description of surface self-diffusion—comparison with classical results, J. Chem. Phys. 80, pp. 5832–5838.

    Article  CAS  Google Scholar 

  6. Voter, A.F. and Doll, J.D. (1985) Dynamical corrections to transition state theory for multistate systems: Surface self-diffusion in the rare-event regime, J. Chem. Phys. 82, pp. 80–92.

    Article  CAS  Google Scholar 

  7. Wert, C. and Zener, C. (1949) Interstitial atomic diffusion coefficients, Phys. Rev. 76, pp. 1169–1175.

    Article  CAS  Google Scholar 

  8. Vineyard, G.H. (1957) Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids 3, pp. 121–127.

    Article  CAS  Google Scholar 

  9. Voter, A.F. (1997) A method for accelerating the molecular dynamics simulation of infrequent events, J. Chem. Phys. 106, pp. 4665–4677.

    Article  CAS  Google Scholar 

  10. Voter, A.F. (1997) Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events, Phys. Rev. Lett. 78, pp. 3908–3911.

    Article  CAS  Google Scholar 

  11. Sørensen, M.R. and Voter, A.F. (2000) Temperature-accelerated dynamics for simulation of infrequent events, J. Chem. Phys. 112, pp. 9599–9606.

    Article  Google Scholar 

  12. Voter, A.F. (1998) Parallel replica method for dynamics of infrequent events, Phys. Rev. B 57, pp. R13985–R13988.

    Article  CAS  Google Scholar 

  13. Henkehnan, G. and Jonsson, H. (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives, J. Chem. Phys. 111, pp. 7010–7022.

    Article  Google Scholar 

  14. Malek, R. and Mousseau, N. (2000) Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique, Phys. Rev. E 62, pp. 7723–7728.

    Article  CAS  Google Scholar 

  15. Munro, L.J. and Wales, D.J. (1999) Defect migration in crystalline silicon, Phys. Rev. B 59, pp. 3969–3980.

    Article  CAS  Google Scholar 

  16. Voter, A.F. (1986) Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100), Phys. Rev. B 34, pp. 6819–6829.

    Article  CAS  Google Scholar 

  17. Voter, A.F. and Chen, S.P. (1987) Mat. Res. Soc. Symp. Proc. 82, p. 2384.

    Google Scholar 

  18. Feibelman, P.J. (1990) Diffusion path for an Al adatom on Al(001), Phys. Rev. Lett. 65, pp. 729–732.

    Article  CAS  Google Scholar 

  19. Villarba, M. and Jonsson, H. (1994) Low-temperature homoepitaxial growth of Pt(111) in simulated vapor deposition, Phys. Rev. B 49, pp. 2208–2211.

    Article  CAS  Google Scholar 

  20. Jünsson, H. (2000) Theoretical studies of atomic-scale processes relevant to crystal growth, Ann. Rev. Phys. Chem. 51, pp. 623–653.

    Article  Google Scholar 

  21. Kresse, G. and Hafner, J. (1993) Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, pp. 558–561.

    Article  CAS  Google Scholar 

  22. Kresse, G. and Hafner, J. (1994) Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium, Phys. Rev. B 49, pp. 14251–14269.

    Article  CAS  Google Scholar 

  23. Kresse, G. and Furthmüller, J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  24. Kresse, G. and Furthmüller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henkelman, G., Jónsson, H. (2002). Long-Time-Scale Simulations of Al(100) Crystal Growth. In: Kotrla, M., Papanicolaou, N.I., Vvedensky, D.D., Wille, L.T. (eds) Atomistic Aspects of Epitaxial Growth. NATO Science Series, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0391-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0391-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0675-3

  • Online ISBN: 978-94-010-0391-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics