Skip to main content

Irreversible Nucleation in Multilayer Growth

  • Chapter
Atomistic Aspects of Epitaxial Growth

Part of the book series: NATO Science Series ((NAII,volume 65))

  • 417 Accesses

Abstract

The epitaxial growth process of a high-symmetry surface occurs because adatoms meet and nucleate new islands that eventually coalesce and complete atomic layers. During multilayer growth, nucleation usually takes place on top of terraces where the geometry of the diffusion process is well defined. We have studied in detail the spatio-temporal distribution of nucleation events and the resulting nucleation rate, a quantity of primary importance for modeling experimental results and evaluating diffusion barriers at step-edges. We provide rigorous results for irreversible nucleation and we assess the limits of mean-field theory (MFT). We show that MFT overestimates the correct result by a factor proportional to the number of times an adatom diffusing on the terrace visits an already visited lattice site. In this report we aim at giving a simple physical account of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herman, M.A. and Sitter, H. (1996) Molecular Beam Epitaxy. Springer, Heidelberg.

    Book  Google Scholar 

  2. Pimpinelli, A. and Villain, J. (1998) Physics of Crystal Growth. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  3. Venables, J.A., Spiller, G.D.T. and Hanbücken, M. (1984) Nucleation and Growth of Thin Films, Rep. Prog. Phys. 47, pp. 399–459.

    Article  Google Scholar 

  4. Brune, H. (1998) Microscopic view of epitaxial metal growth: nucleation and aggregation, Surf. Sc.Rep. 31, pp. 125–229.

    Google Scholar 

  5. Amar, J.G., Family F. and Lam, P.-M. (1994) Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B 50, pp. 8781–8797.

    Article  CAS  Google Scholar 

  6. Stoldt, C.R., Caspersen, K.J., Bartelt, M.C., Jenks, C.J., Evans, J.W. and Thiel, P.A. (2000) Using temperature to tune film roughness: nonintuitive behavior in a simple system, Phys. Rev. Lett. 85, pp. 800–803.

    Article  CAS  Google Scholar 

  7. Castellano, C. and Politi, P. (2001) Spatiotemporal distribution of nucleation events during crystal growth, Phys. Rev. Lett. 87, art. no. 056102.

    Article  CAS  Google Scholar 

  8. P. Politi and C. Castellano (in preparation).

    Google Scholar 

  9. Krug, J., Politi, P. and Michely, T. (2000) Island nucleation in the presence of step-edge barriers: Theory and applications, Phys. Rev. B 61, pp. 14037–14046.

    Article  CAS  Google Scholar 

  10. Kyuno, K. and Ehrlich, G. (1997) Step-edge barriers: truths and kinetic consequences, Surf. Sci. 383, pp. L766–L774.

    Article  CAS  Google Scholar 

  11. Schroeder, M. and Wolf, D.E. (1995) Magic islands and submonolayer scaling in molecular beam epitaxy, Phys. Rev. Lett. 74, pp. 2062–2065.

    Article  CAS  Google Scholar 

  12. Tersoff, J., Denier van der Gon, A.W. and Tramp, R.M. (1994) Critical island size for layer-by-layer growth, Phys. Rev. Lett. 72, pp. 266–269.

    Article  CAS  Google Scholar 

  13. Harris, S. (1995) Kinetics of interlayer transport prior to nucleation, Phys. Rev. B 52, pp. 16793–16795.

    Article  CAS  Google Scholar 

  14. Smilauer, P. and Harris, S. (1995) Determination of step-edge barriers to interlayer transport from surface morphology during the initial stages of homoepitaxial growth, Phys. Rev. B 51, pp. 14798–14801.

    Article  CAS  Google Scholar 

  15. Politi, P. (1997) Different regimes in the Ehrlich-Schwoebel instability, J. Phys. I 17, pp. 797–806.

    Article  Google Scholar 

  16. Hughes, B.D. (1995) Random Walks and Random Environments. Clarendon Press, Oxford.

    Google Scholar 

  17. Pimpinelli, A., Villain, J. and Wolf, D.E., (1992) Surface diffusion and island density, Phys. Rev. Lett. 69, p. 985.

    Article  CAS  Google Scholar 

  18. Rottler, J. and Maass, P. (1999) Second layer nucleation in thin film growth, Phys. Rev. Lett. 83, pp. 3490–3493; Heinrichs, S., Rottler, J. and Maass, P. (2000) Nucleation on top of islands in epitaxial growth, Phys. Rev. B 62, pp. 8338-8359.

    Article  CAS  Google Scholar 

  19. Krug, J. (2000) Scaling regimes for second layer nucleation, Eur. Phys. J. B 18, pp. 713–719.

    Article  CAS  Google Scholar 

  20. Bromann, K., Brune, H., Roder, H. and Kern, K. (1995) Interlayer mass transport in homoepitaxial and heteroepitaxial metal growth, Phya. Rev. Lett. 75, pp. 677–680; Kalff, M., Comsa, G. and Michely, T. (1998) How sensitive is epitaxial growth to adsorbates?, Phys. Rev. Lett 81, pp. 1255-1258; Roos K.R. and TVingides, M.C. (2000) Determination of interlayer diffusion parameters for Ag/Ag(111), Phys. Rev. Lett. 85, pp. 1480-1483.

    Article  CAS  Google Scholar 

  21. If we extract the nucleation sites from a snapshot of the surface it is necessary to take into account that boundaries of the newly formed islands and of the lower terraces have moved in the meanwhile. An in situ study with enough statistics is likely to be unfeasible (Th. Michely, private communication).

    Google Scholar 

  22. Elkinani, I. and Villain, J. (1994) Growth roughness and instabilities due to the Schwoebel effect—A one-dimensional model, J. Physique 14, pp. 949–973; Politi P. and Villain, J. (1996) Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model, Phys. Rev. B 54, pp. 5114-5129.

    Google Scholar 

  23. Ratsch, C, Gyure, M.P., Chen, S., Kang, M. and Vvedensky, D.D. (2000) Fluctuations and scaling in aggregation phenomena, Phys. Rev. B 61, pp. R10598–R10601.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Politi, P., Castellano, G. (2002). Irreversible Nucleation in Multilayer Growth. In: Kotrla, M., Papanicolaou, N.I., Vvedensky, D.D., Wille, L.T. (eds) Atomistic Aspects of Epitaxial Growth. NATO Science Series, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0391-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0391-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0675-3

  • Online ISBN: 978-94-010-0391-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics