Skip to main content

Protein phosphorylation in the delivery of and response to auxin signals

  • Chapter
Auxin Molecular Biology

Abstract

The importance of reversible protein phosphorylation in regulation of plant growth and development has been amply demonstrated by decades of research. Here we discuss recent studies that suggest roles for protein phosphorylation in regulation of both auxin responses and polar auxin transport. Specific kinases act at auxin-requiring steps in floral and embryonic development, and at the junction(s) between light and auxin signaling pathways in hypocotyl elongation and phototropism responses. New evidence for rapid mitogen-activated protein kinase (MAPK) activation by auxin treatment suggests that MAPK cascade(s) might mediate cellular responses to auxin. Protein phosphorylation also may play a crucial role in regulating the activity or turnover of auxin-responsive transcription factors. Auxin transport is modulated by phosphorylation, and protein phosphatase activity is involved in regulation of auxin transport streams in roots. Although the regulatory circuits have not been fully elucidated, these studies suggest that protein phosphorylating and dephosphorylating enzymes perform key functions in auxin biology. In some cases, these enzymes act at the intersections between auxin signaling and other signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariño, J., Perez-Calderon, E., Cunillera, N., Camps, M., Posas, F. and Ferrer, A. 1993. Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in A. thaliana. Plant Mol. Biol. 21:475–485.

    Article  PubMed  Google Scholar 

  • Banno, H., Hirano, K., Nakamura, T., Irie, K., Nomoto, S., Matsumoto, K. and Machida, Y. 1993. NPK1, a tobacco gene that encodes a protein with a domain homologous to yeast BCK1, STE11, and Byr2 protein kinases. Mol. Cell. Biol. 13: 4745–4752.

    PubMed  CAS  Google Scholar 

  • Becker, D. and Hedrich, D. 2002. Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol. Biol. 49: 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B. and Feldmann, K.A. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948–950.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, S.R.M., Alvarez, J., Bossinger, G. and Smyth, D.R. 1995. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 8: 505–520.

    Article  CAS  Google Scholar 

  • Berleth, T. and Jürgens, G. 1993. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118: 575–587.

    Google Scholar 

  • Bernasconi, P. 1996. Effect of synthetic and natural protein tyrosine kinase inhibitors on auxin efflux in zucchini (Cucurbita pepo) hypocotyls. Physiol. Plant. 96: 205–210.

    Article  CAS  Google Scholar 

  • Bögre, L., Calderini, O., Binarova, P., Mattauch, M., Till, S., Kiegerl, S., Jonak, C., Pollaschek, C., Barker, P., Huskisson, N. S., Hirt, H. and Heberle-Bors, E. 1999. A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11: 101–114.

    PubMed  Google Scholar 

  • Bögre, L., Ligterink, W., Heberle-Bors, E. and Hirt, H. 1996. Mechanosensors in plants. Nature 383: 489–490.

    Article  PubMed  Google Scholar 

  • Bögre, L., Meskiene, L., Heberle-Bors, E. and Hirt, H. 2000. Stressing the role of MAP kinases in mitogenic stimulation. Plant Mol. Biol. 43: 705–718.

    Article  PubMed  Google Scholar 

  • Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617–619.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, W.R., Beck, C.F., Cashmore, A.R., Christie, J.M., Hughes, J., Jarillo, J.A., Kagawa, T., Kanegae, H., Liscum, E., Nagatani, A., Okada, K., Salomon, M., Rudiger, W., Sakai, T., Takano, M., Wada, M. and Watson, J.C. 2001. The phototropin family of photoreceptors. Plant Cell 13: 993–998.

    PubMed  CAS  Google Scholar 

  • Brown, D., Rashotte, A., Murphy, A., Tague, B., Peer, W., Taiz, L. and Muday, G. 2001. Flavonoids act as negative regulators of auxin transport in vivo in A. thaliana. Plant Physiol., 126: 524–535.

    Article  PubMed  CAS  Google Scholar 

  • Calderini, O., Bögre, L., Vicente, O., Binarova, P., Heberle-Bors, E. and Wilson, C. 1998. A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J. Cell Sci. 111: 3091–3100.

    PubMed  CAS  Google Scholar 

  • Casamayor, A., Perez-Callejon, E., Pujol, G., Ariño, J. and Ferrer, A. 1994. Molecular characterization of the fourth isoform of the catalytic subunit of protein phosphatase 2A from Arabidopsis thaliana. Plant Mol. Biol. 26: 523–528.

    Article  PubMed  CAS  Google Scholar 

  • Casimiro, L., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swarup, R., Graham, N., Inzé, D., Sandberg, G., Casero, P.J. and Bennett, M. 2001. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843–852.

    PubMed  CAS  Google Scholar 

  • Chang, S. and Kaufman, P. 2000. Effects of staurosporine, okadaic acid and sodium fluoride on protein phosphorylation in gravire-sponding oat shoot pulvini. Plant Physiol. Biochem. 38: 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R., Hilson, P., Sedbrook, J., Rosen, E., Caspar, T. and Masson, P.H. 1998. The Arabidopsis thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl. Acad. Sci. USA 95: 15112–15117.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, S.K., Dagenais, N., Chory, J. and Weigel, D. 2000. Regulation of auxin response by the protein kinase PINOID. Cell 100: 469–478.

    Article  PubMed  CAS  Google Scholar 

  • Christie, J.M., Reymond, P., Powell, G.K., Bernasconi, P., Raibekas, A.A., Liscum, E. and Briggs, W.B. 1998. Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282: 1698–1701.

    Article  PubMed  CAS  Google Scholar 

  • Colón-Carmona, A., Chen, D.L., Yeh, K.-C. and Abel, S. 2000. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol. 124: 1728–1738.

    Article  PubMed  Google Scholar 

  • Corum, J.W., Hartung, A.J., Stamey, R.T. and Rundle, S.J. 1996. Characterization of DNA sequences encoding a novel isoform of the 55 kDa B regulatory subunit of the type 2A protein serine/threonine phosphatase of Arabidopsis thaliana. Plant Mol. Biol. 31: 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C. 1880. The Power of Movements in Plants. John Murray, London.

    Google Scholar 

  • Decroocq-Ferrant, V., Decroocq, S., van Went, J., Schmidt, E. and Kreis, M. 1995. A homologue of the MAP-ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of Petunia hybrida. Plant Mol. Biol. 27: 339–350.

    Article  PubMed  CAS  Google Scholar 

  • Delbarre, A., Muller, P. and Guern, J. 1998. Short-lived and phosphorylated proteins contribute to carrier-mediated efflux, but not to influx, of auxin in suspension-cultured tobacco cells. Plant Physiol. 116:833–844.

    Article  PubMed  CAS  Google Scholar 

  • Deruère, J., Jackson, K., Garbers, C., Söll, D. and DeLong, A. 1999. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J. 20: 389–399.

    Article  PubMed  Google Scholar 

  • Dharmasiri, S. and Estelle, M. 2002. The role of regulated protein degradation in auxin response. Plant Mol. Biol. 49: 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Frye, C.A., Tang, D. and Innes, R.W. 2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Gälweiler, L., Guan, C., Müller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. 1998. Regulation of polar auxin transport by AtPINl in Arabidopsis vascular tissue. Science 282: 2226–2230.

    Article  PubMed  Google Scholar 

  • Garbers, C., DeLong, A., Deruère, J., Bernasconi, P. and Söll, D. 1996. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J 15: 2115–2124.

    PubMed  CAS  Google Scholar 

  • Götz J., Probst A., Ehler E., Hemmings B. and Kues W. 1998. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Cα. Proc. Natl. Acad. Sci. USA 95: 12370–12375.

    Article  PubMed  Google Scholar 

  • Grant, J.J., Yun, B.W. and Loake, G.J. 2000. Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J. 24: 569–582.

    Article  PubMed  CAS  Google Scholar 

  • Gray, W.M. and Estelle, M. 2000. Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem. Sci. 25: 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. and Barford, D. 1999. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Hagemann, C. and Rapp, U.R. 1999. Isotype-specific functions of Raf kinases. Exp. Cell Res. 253: 34–46.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, G. and Guilfoyle, T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49: 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Hanks, S.K., Quinn, A.M., and Hunter, T. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.G. 1999 Plant protein serine/threonine kinases: classification and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 97–131.

    Article  PubMed  CAS  Google Scholar 

  • Hardtke, C.S. and Berleth, T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17: 1405–1411.

    Article  PubMed  CAS  Google Scholar 

  • Harper, R.M., Stowe-Evans, E.L., Luesse, D.R., Muto, H., Tatem-atsu, K., Watahiki, M. K., Yamamoto, K. and Liscum, E. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757–770.

    PubMed  CAS  Google Scholar 

  • Haynes, J.G., Hartung, A.J., Hendershot, J.D.I., Passingham, R.S. and Rundle, S.J. 1999. Molecular characterization of the B′ regulatory subunit gene family of Arabidopsis protein phosphatase 2A. Eur. J. Biochem. 260: 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Hobbie, L. and Estelle, M. 1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, H.-L., Okamoto, H., Wang, M., Ang, L.-H., Matsui, M., Goodman, H. and Deng, X. W. 2000. FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14: 1958–1970.

    PubMed  CAS  Google Scholar 

  • Huala, E., Oeller, P.W., Liscum, E., Han, I.-S., Larsen, E. and Briggs, W. 1997. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278: 2120–2123.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura, K., Mizoguchi, T., Hayashida, N., Seki, M. and Shinozaki, K. 1998. Molecular cloning and characterization of three cDNAs encoding putative mitogen-activated protein kinase kinases (MAPKKs) in Arabidopsis thaliana. DNA Res. 5: 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T. and Shinozaki, K. 2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24: 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, M. and Rubery, PH. 1988. Naturally occurring auxin transport regulators. Science 241: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P.R. and Ecker, J.R. 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32: 227–254.

    Article  PubMed  CAS  Google Scholar 

  • Jonak, C., Pay, A., Bögre, L., Hirt, H. and Heberle-Bors, E. 1993. The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner. Plant J. 3: 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A.M., Im, K.H., Savka, M.A., Wu, M.J., DeWitt, N.G., Shillito, R. and Binns, A.N. 1998. Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282: 1114–1117.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, J.D., Landau, E.M. and Iyengar, R. 2000. Signaling networks: the origins of cellular multitasking. Cell 103: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Jouannic, S., Hamal, A., Leprince, A.S., Tregear, J.W., Kreis, M. and Henry, Y 1999. Plant MAP kinase kinase kinases structure, classification and evolution. Gene 233: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Jouannic, S., Champion, A., Segui-Simarro, J.-M., Salimova, E., Picaud, A., Tregear, J., Testillano, P., Risueno, M.-C., Simanis, V., Kreis, M. and Henry, Y 2001. The protein kinases AtMAP3K∊ 1 and BnMAP3K∊ 1 are functional homologues of S. pombe cdc7p and may be involved in cell division. Plant J., 26: 637–649.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.C., Soh, M.S., Hong, S.H., Furuya, M., Nam, H.G. 1998. Photomorphogenic development of the Arabidopsis shy2-lD mutation and its interaction with phytochromes in darkness. Plant J. 15: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.C., Soh, M.S., Kang, B.J., Furuya, M. and Nam, H.G. 1996. Two dominant photomor-phogenic mutations of A. thaliana identified as suppressor mutations of hy2. Plant J. 9: 441–456.

    Article  PubMed  CAS  Google Scholar 

  • Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C. and Chua, N.-H. 1999. Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145: 317–330.

    Article  PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Zeng, W. and Sheen, J. 1998. Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716–720.

    Article  PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97: 2940–2945.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, K.A., Harris, D.M. and Rundle, S.J. 1997. Differential expression of three Arabidopsis genes encoding the B′ regulatory subunit of protein phosphatase 2A. Eur. J. Biochem. 245: 156–163.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.S., Chang, W.-K. and Evans, M.L. 1990. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistiu-mulated roots of Zea mays. Plant Physiol. 94: 1770–1775.

    Article  PubMed  CAS  Google Scholar 

  • Leyser, H.M.O., Lincoln, CA., Timpte, C., Lammer, D., Turner, J. and Estelle, M. 1993. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme El. Nature 364: 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Hagen, G. and Guilfoyle, T. 1991. An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell 3: 1167–1175.

    PubMed  CAS  Google Scholar 

  • Lincoln, C., Britton, J.H. and Estelle, M. 1990. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071–1080.

    PubMed  CAS  Google Scholar 

  • Liscum, E. and Briggs, W.R. 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7: 473–485.

    PubMed  CAS  Google Scholar 

  • Liscum, E. and Reed, J.W. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol. 49: 387–400.

    Article  PubMed  CAS  Google Scholar 

  • Lomax, T.L., Muday, G.K. and Rubery, P. 1995. Auxin transport. In: P.J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry, and Molecular Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 509–530.

    Google Scholar 

  • Lu, Y.T. and Feldman, L.J. 1997. Light-regulated root gravit-ropism: a role for, and characterization of, a calcium/calmodulin-dependent protein kinase homolog. Planta 203(Suppl.): S91–S97.

    Article  PubMed  CAS  Google Scholar 

  • Luschnig, C., Gaxiola, R.A., Grisafi, P. and Fink, G.R. 1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in A. thaliana. Genes Dev. 12: 2175–2187.

    Article  PubMed  CAS  Google Scholar 

  • MacKintosh, C. and MacKintosh, R.W. 1994. Inhibitors of protein kinases and phosphatases. Trends Biochem Sci. 19: 444–448.

    Article  PubMed  CAS  Google Scholar 

  • Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot-Rechenmann, C. and Bennett, M.J. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 18: 2066–2073.

    Article  PubMed  CAS  Google Scholar 

  • Mayer-Jaekel, R.E. and Hemmings, B.A. 1994. Protein phosphatase 2A, a ‘ménage à trois’. Trends Cell Biol. 4: 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Meskiene, I. and Hirt, H. 2000. MAP kinase pathways: molecular plug-and-play chips for the cell. Plant Mol Biol. 42: 791–806.

    Article  PubMed  CAS  Google Scholar 

  • Millward, T.A., Zolnierowicz, S. and Hemmings, B.A. 1999. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biol. Sci. 24: 186–191.

    Article  CAS  Google Scholar 

  • Mitchell, E.K. and Davies, P.J. 1975. Evidence for three different systems of movement of indoleacetic acid in intact roots of Phaseolus coccineus. Physiol. Plant. 33: 290–294.

    Article  CAS  Google Scholar 

  • Mizoguchi, T., Gotoh, Y., Nishida, E., Yamaguchi-Shinozaki, K., Hayashida, N., Iwasaki, T., Kamada, H. and Shinozaki, K. 1994. Characterization of two cDNAs that encode MAP kinase homologues in A. thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 5: 111–122.

    Article  PubMed  CAS  Google Scholar 

  • Mockaitis, K. and Howell, S.H. 2000. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24: 785–796.

    Article  PubMed  CAS  Google Scholar 

  • Morelli, G. and Ruberti, I. 2000. Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol. 122: 621–626.

    Article  PubMed  CAS  Google Scholar 

  • Morris, D.A. and Robinson, J.S. 1998. Targeting of auxin carriers to the plasma membrane: differential effects of brefeldin A on the traffic of auxin uptake and efflux carriers. Planta 205: 606–612.

    Article  CAS  Google Scholar 

  • Morris, D.A., Rubery, PH., Jarman, J. and Sabater, M. 1991. Effects of inhibitors of protein synthesis on transmembrane auxin transport in Cucurbita pepo L. hypocotyl segments. J. Exp. Bot. 42: 773–783.

    Article  CAS  Google Scholar 

  • Morris, P.C., Guerrier, D., Leung, J. and Giraudat, J. 1997. Cloning and characterization of MEK1, an Arabidopsis gene encoding a homologue of MAP kinase kinase. Plant Mol. Biol. 35: 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  • Motchoulski, A. and Liscum, E. 1999. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286: 961–964.

    Article  PubMed  CAS  Google Scholar 

  • Muday, G. 2000. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton. J. Plant Growth Regul., 19: 385–396.

    PubMed  CAS  Google Scholar 

  • Müller, A., Guan, C., Gälweiler, L., Tanzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E. and Palme, K. 1998. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17: 6903–6911.

    Article  PubMed  Google Scholar 

  • Murphy, A., Peer, W. and Taiz, L. 2000. Regulation of auxin transport by aminopeptidases and endogenous Flavonoids. Planta 211: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Nagpal, P., Walker, L.M., Young. J.C., Sonawala, A., Timpte, C., Estelle, M. and Reed, J.W. 2000. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 123: 563–573.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, M., Hirano, K., Nakashima, S., Banno, H., Nishihama, R. and Machida, Y 1998. The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant: correlation with cell proliferation. Plant Cell Physiol. 39: 690–700.

    Article  PubMed  CAS  Google Scholar 

  • Napier, R.M., David, K.M. and Perrot-Rechenmann, C. 2002. A short history of auxin-binding proteins. Plant Mol. Biol. 49: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Nishihama, R., Banno, H., Kawahara, E., Irie, K. and Machida, Y 1997. Possible involvement of differential splicing in regulation of the activity of Arabidopsis ANP1 that is related to mitogen-activated protein kinase kinase kinases (MAPKKKs). Plant J. 12: 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Nishihama, R., Ishikawa, M., Araki, S., Soyano, T., Asada, T. and Machida, Y 2001. The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev. 15: 352–363.

    Article  PubMed  CAS  Google Scholar 

  • Nishihama, R. and Machida, Y 2000. The MAP kinase cascade that includes MAPKKK-related protein kinase NPK1 controls a mitotic process in plant cells. Res. Probl. Cell Differ. 27: 119–130.

    Article  CAS  Google Scholar 

  • Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3: 677–684.

    PubMed  CAS  Google Scholar 

  • Oono, Y., Chen, Q.G., Overvoorde, P.J., Kohler, C. and The-ologis, A. 1998. age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell 10: 1649–1662.

    PubMed  CAS  Google Scholar 

  • Parry, G., Delbarre, A., Marchant, A., Swarup, R., Napier, R., Perrot-Rechenmann, C. and Bennett, M.J. 2001. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation auxl. Plant J. 25: 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J. E., Sharma, S. B., Klessig, D.F., Martienssen, R., Mattsson, O., Jensen, A.B. and Mundy, J. 2000. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur, J. 2000. Signal transduction. An arresting start for MAPK. Science 290: 1515–1518.

    Article  PubMed  CAS  Google Scholar 

  • Prestamo, G., Testillano, P.S., Vicente, O., Gonzalez-Melendi, P., Coronado, M.J., Wilson, C., Heberle-Bors, E. and Risueno, M.C. 1999. Ultrastructural distribution of a MAP kinase and transcripts in quiescent and cycling plant cells and pollen grains. J Cell Sci. 112: 1065–1076.

    PubMed  CAS  Google Scholar 

  • Price, N.E. and Mumby, M.C. 2000. Effects of regulatory subunits on the kinetics of protein phosphatase 2A. Biochemistry 39: 11312–11318.

    Article  PubMed  CAS  Google Scholar 

  • Przemeck, G.K.H., Mattsson, J., Hardtke, C.S., Sung, Z.R. and Berleth, T. 1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axializa-tion. Planta 200: 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, A., Ahamed, A., Amakawa, T., Goto, N. and Tsurumi, S. 2001. Chromosaponin I specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Plant Physiol. 125: 990–1000.

    Article  PubMed  CAS  Google Scholar 

  • Rashotte, A., Brady, S., Reed, R., Ante, S. and Muday, G. 2000. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 122: 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Rashotte, A.M., DeLong A. and Muday, G.K 2001. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response and lateral root growth. Plant Cell, 13: 1683–1697.

    PubMed  CAS  Google Scholar 

  • Reed, J.W., Elumalai, R.P. and Chory, J. 1998a. Supressors of an Arabidopsis thaliana phyB mutation identity genes control light signaling andhypocotyl elongation. Genetics 148: 1295–1310.

    PubMed  CAS  Google Scholar 

  • Reed, R.C., Brady, S.R. and Muday, G.K. 1998b. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 118: 1369–1378.

    Article  PubMed  CAS  Google Scholar 

  • Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H. and Jones, J.D. 1999. Rapid Avr9-and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11: 273–287.

    PubMed  CAS  Google Scholar 

  • Ronne, H., Carlberg, M., Hu, G.Z. and Nehlin, J.O. 1991. Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol. Cell. Biol. 11: 4876–4884.

    PubMed  CAS  Google Scholar 

  • Rubery, P.H. 1990. Phytotropins: receptors and endogenous ligands. Symp. Soc. Exp. Biol. 44: 119–146.

    PubMed  CAS  Google Scholar 

  • Ruediger, R., Hentz, M., Fait, J., Mumby, M. and Walter, G. 1994. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J. Virol. 68: 123–129.

    PubMed  CAS  Google Scholar 

  • Rundle, S.J., Hartung, A.J., Corum, J.W. and O’Neill, M. 1995. Characterization of a cDNA encoding the 55 kDa B regulatory subunit of Arabidopsis protein phosphatase 2A. Plant Mol. Biol. 28: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P. and Scheres, B. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M. and Okada, K. 2001. Arabidopsis nphl and npll: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  • Sakamoto, K. and Nagatani, A. 1996. Nuclear localization activity of phytochrome B. Plant J. 10: 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, G.F.E. 2002. Secondary messengers and phospholipase A2 in auxin signal transduction Plant. Mol. Biol. 49: 357–372.

    Article  CAS  Google Scholar 

  • Sessions, R.A. and Zambryski, P.C. 1995. Arabidopsis gynoecium structure in the wild type and ettin mutants. Development 121: 1519–1532.

    PubMed  CAS  Google Scholar 

  • Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A. and Zambryski, P.C. 1997. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124: 4481–4491.

    PubMed  CAS  Google Scholar 

  • Shibata, W., Banno, H., Ito, Y., Hirano, K., Irie, K., Usami, S., Machida, C. and Machida, Y 1995. A tobacco protein kinase, NPK2, has a domain homologous to a domain found in activators of mitogen-activated protein kinases (MAPKKs). Mol. Gen. Genet. 246: 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Shibaoka, H. and Nagai, R. 1994. The plant cytoskeleton. Curr. Opin. Cell Biol. 6: 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Shu Y, Yang H., Hallberg E. and Hallberg R. 1997. Molecular genetic analysis of Rtslp, a B′ regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A. Mol. Cell. Biol. 17: 3242–3245.

    PubMed  CAS  Google Scholar 

  • Sieberer, T., Seifert, G.J., Hauser, M.-T., Grisafi, P., Fink, G.R. and Luschnig, C. 2000. Post-transcriptional control of the Arabidopsis efflux carrier EIR1 requires AXR1. Curr. Biol. 10: 1595–1598.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.D. and Walker, J.C. 1996. Plant protein phosphatases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 101–125.

    Article  PubMed  CAS  Google Scholar 

  • Stamey, R.T. and Rundle, S.J. 1996. Characterization of a novel isoform of a type 2A serine/threonine protein phosphatase from Arabidopsis thaliana. Plant Physiol. 110: 335.

    Article  Google Scholar 

  • Suttle, J.C. 1988. Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of n-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol. 88: 795–799.

    Article  PubMed  CAS  Google Scholar 

  • Tena, G. and Renaudin, J.P. 1998. Cytosolic acidification but not auxin at physiological concentration is an activator MAP kinases in tobacco cells. Plant J 16: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Testillano, P.S., Coronado, M.J., Segui, J.M., Domenech, J., Gonzalez-Melendi, P., Raska, I. and Risueno, M.C. 2000. Defined nuclear changes accompany the reprogramming of the microspore to embryogenesis. J. Struct. Biol. 129: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Thakore, C.U., Livengood, A.J., Hendershot, J.D.I., Corum, J.W., Latorre, K.A. and Rundle, S.J. 1999. Characterization of the promoter region and expression pattern of three Arabidopsis protein phosphatase type 2A subunit genes. Plant Sci. 147: 165–176.

    Article  CAS  Google Scholar 

  • Thomason, P. and Kay, R. 2000. Eukaryotic signal transduction via histidine-aspartate phosphorelay. J. Cell Sci. 113: 3141–3150.

    PubMed  CAS  Google Scholar 

  • Tian, Q. and Reed, J.W. 1999. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126: 711–721.

    PubMed  CAS  Google Scholar 

  • Timpte, C., Wilson, A.K. and Estelle, M. 1994. The axr2-l mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138: 1239–1249.

    PubMed  CAS  Google Scholar 

  • Timpte, C., Lincoln, C., Pickett, F.B., Turner, J. and Estelle, M. 1995. The AXR1 and AUX genes of Arabidopsis function in separate auxin-response pathways. Plant J. 8: 561–569.

    Article  PubMed  CAS  Google Scholar 

  • Tsurumi, S. and Ohwaki, Y. 1978. Transport of 14C-labeled in-doleacetic acid in Vicia root segments. Plant Cell Physiol. 19: 1195–1206.

    CAS  Google Scholar 

  • Ulm, R., Revenkova, E., di Sansebastiano, G.P., Bechtold, N. and Paszkowski, J. 2001. Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev. 15: 699–709.

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov, T., Hagen G. and Guilfoyle, T.J. 1997a. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868.

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T.J. 1997b. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971.

    PubMed  CAS  Google Scholar 

  • Utsuno, K., Shikanai, T., Yamada, Y and Hashimoto, T. 1998. AGR, an Agravitropic locus of A. thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol. 39: 1111–1118.

    Article  PubMed  CAS  Google Scholar 

  • Virshup, D.M. 2000. Protein phosphatase 2A: a panoply of enzymes. Curr. Opin. Cell Biol. 12: 180–185.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman, D.A., Solomon, N.M., Chang, H.C., Karim, F.D., Therrien, M. and Rubin, G.M. 1996. Protein phosphatase 2A positively and negatively regulates Ras 1-mediated photoreceptor development in Drosophila. Genes Dev. 10: 272–278.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C., Voronin, V., Touraev, A., Vicente, O. and Heberle-Bors, E. 1997. A developmentally regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9: 2093–2100.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison DeLong .

Editor information

Catherine Perrot-Rechenmann Gretchen Hagen

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

DeLong, A., Mockaitis, K., Christensen, S. (2002). Protein phosphorylation in the delivery of and response to auxin signals. In: Perrot-Rechenmann, C., Hagen, G. (eds) Auxin Molecular Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0377-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0377-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3917-8

  • Online ISBN: 978-94-010-0377-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics