Skip to main content

Genetics of Aux/IAA and ARF action in plant growth and development

  • Chapter

Abstract

Dramatic advances in our understanding of auxin signal-response pathways have been made in recent years. Much of this new knowledge has come through the study of mutants in Arabidopsis thaliana. Mutations have been identified in a wide variety of auxin-response components, including auxin transporters, protein kinases and phosphatases, components of a ubiquitin-proteosome pathway, and transcriptional regulators. This review focuses on mutations that affect auxin-modulated transcription factors, in particular those in the Aux/IAA and AUXIN RESPONSE FACTOR (ARF) genes. Mutants in members of these related gene families exhibit phenotypes that indicate both unique localized functions, as well as overlapping redundant functions, throughout plant development — from embryogenesis to flowering. Effects of specific mutations on Aux/IAA and ARF protein functions at the biochemical and physiological levels will be discussed. We will also discuss potential mechanisms for interactions between auxin and light response pathways that are suggested by these mutants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, S. and Theologis, A. 1996. Early genes and auxin action. Plant Physiol, 111:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Abel, S., Oeller, P.W. and Theologis, A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. USA 91: 326–330.

    Article  PubMed  CAS  Google Scholar 

  • Abel, S., Nguyen, M.D. and Theologis, A. 1995. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol. 251: 533–549.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, J. 1994. The ETTIN gene. In: J. Bowman (Ed.) Arabidopsis: An Atlas of Morphology, Springer-Verlag, New York, pp. 268–269.

    Google Scholar 

  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Berleth, T. and Jürgens, G. 1993. The role of the MONOPTEROS gene in organizing the basal body region of the Arabidopsis embryo. Development 118: 575–587.

    Google Scholar 

  • Briggs, W.R., Beck, C.F., Cashmore, A.R., Christie, J.M., Hughes, J., Jarillo, J.A., Kagawa, T., Kanegae, H., Liscum, E., Nagatani, A., Okada, K., Salomon, M., Rüdiger, W., Sakai, T., Takano, M., Wada, M. and Watson, J,C. 2001. The phototropin family of photoreceptors. Plant Cell 13: 993–997.

    PubMed  CAS  Google Scholar 

  • Büche, C., Poppe, C., Schäfer, E. and Kretsch, T. 2000. eidl: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell 12: 547–558.

    PubMed  Google Scholar 

  • Choi, G., Yi, H., Lee, J. Kwon, Y.-K., Soh, M.S., Shin, B., Luka, Z., Hahn, T.-R. and Song, P.-S. 1999. Phytochrome signaling is mediated through nucleoside diphosphate kinase 2. Nature 401: 610–613.

    Article  PubMed  CAS  Google Scholar 

  • Colón-Carmona, A., Chen, D.L., Yeh, K.-C. and Abel, S. 2000. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol. 124: 1728–1738.

    Article  PubMed  Google Scholar 

  • Cooke, T.J., Poli, D.B., Sztein, A.E. and Cohen, J.D. 2002. Evolutionary patterns in auxin action. Plant Mol. Biol. 49: 319–338.

    Article  PubMed  CAS  Google Scholar 

  • Davies, P.J. 1995. Plant Hormones, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Book  Google Scholar 

  • del Pozo, J.C. and Estelle, M. 1999. Function of the ubiquitinproteosome pathway in auxin responses. Trends Plant Sci. 4: 107–112.

    Article  PubMed  Google Scholar 

  • Deyholos, M.K., Cordner, G., Beebe, D. and Sieburth, L.E. 2000. The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127: 3205–3213.

    PubMed  CAS  Google Scholar 

  • Dharmasiri, S. and Estelle, M. 2002. The role of regulated protein degradation in auxin response. Plant Mol. Biol. 49: 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Dieterle, M., Zhou, Y.-C., Schäfer, E., Funk, M. and Kretsch, T 2001. EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Dev. 15: 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser, C. 2001. The phytochromes, a family of red/far-red absorbing photoreceptors. J. Biol. Chem. 276: 11453–11456.

    Article  PubMed  CAS  Google Scholar 

  • Franco, A.R., Gee, M.A. and Guilfoyle, T. 1991. Induction and superinduction of auxin-responsive mRNAs with auxin and protein synthesis inhibitors. J. Biol. Chem. 265: 15845–15849.

    Google Scholar 

  • Freedman, L.P. 1998. Molecular Biology of Steroid and Nuclear Hormone Receptors. Birkhäuser, Switzerland.

    Book  Google Scholar 

  • Fukaki, H. and Tasaka, M. 1998. SLR, a novel genetic locus involved in auxin signaling in Arabidopsis thaliana. 9th International Conference on Arabidopsis Research, Madison, WI.

    Google Scholar 

  • Gälweiler, L., Changhui, G., Müller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K. 1998. Regulation of polar auxin transport by AtPINl in Arabidopsis vascular tissue. Science 282: 2226–2230.

    Article  PubMed  Google Scholar 

  • Gil, P. and Green, P.J. 1997. Regulatory activity exerted by the SAUR-AC1 promoter region in transgenic plants. Plant Mol. Biol. 34: 803–808.

    Article  PubMed  CAS  Google Scholar 

  • Gray, W.M. and Estelle, M. 2000. Function of the ubiquitin-proteosome pathway in auxin response. Trends Biochem. Sci. 25: 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle, T., Hagen, G. Ulmasov, T. and Murfett, J. 1998a. How does auxin turn on genes? Plant Physiol. 118: 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle, T., Ulmasov, T. and Hagen, G. 1998b. The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol. Life Sci. 54: 619–627.

    Article  PubMed  CAS  Google Scholar 

  • Hagen, G. and Guilfoyle, T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49: 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Hamann, T., Mayer, U. and Jürgens, G. 1999. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126: 1387–1395.

    PubMed  CAS  Google Scholar 

  • Hardtke, C.S. and Berleth, T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17: 1405–1411.

    Article  PubMed  CAS  Google Scholar 

  • Harper, R.M., Stowe-Evans, E.X., Luesse, D.R., Muto, H., Tatematsu, K., Watahiki, M.K., Yamamoto, K. and Liscum, E. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12: 757–770.

    PubMed  CAS  Google Scholar 

  • Karin, M. 1998. New twists in gene regulation by glucocorticoid receptor: Is DNA binding dispensable? Cell 93: 487–490.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, P.B., Wu, L.-L., Brock, T.G. and Kim, D. 1995. Hormones and orientation of growth. In: P.J. Davies (Ed.) Plant Hormones, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 547–571.

    Chapter  Google Scholar 

  • Kendrick, R.E. and Kronenberg, G.H.M. 1994. Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Key, J.L. 1969. Hormones and nucleic acid metabolism. Annu. Rev. Plant Physiol. 20: 449–474.

    Article  CAS  Google Scholar 

  • Kim, B.C., Soh, M.S., Kang, B.J., Furuya, M. and Nam, H.G. 1996a. Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J. 9: 441–456.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.C., Soh, M.O., Hong, S.H., Furuya, M. and Nam, H.G. 1996b. Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochromes in darkness. Plant J. 15:61–68.

    Article  Google Scholar 

  • Kim, J., Harter, K. and Theologis, A. 1997. Protein-protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. USA 94:11786–11791.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi, K., Sugiyama, M. and Fukuda, H. 2000. A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow eanalization hypothesis into question. Development 127: 3197–3204.

    PubMed  CAS  Google Scholar 

  • Leyser, O. and Berleth, T 1999. A molecular basis for auxin action. Cell Mol. Dev. Biol. 10: 131–137.

    Article  CAS  Google Scholar 

  • Leyser, H.M.O., Pickett, F.B., Dharmasiri, S. and Estelle, M. 1996. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 10: 403–413.

    Article  PubMed  CAS  Google Scholar 

  • Liscum, E. and Briggs, W.R. 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7: 473–485.

    PubMed  CAS  Google Scholar 

  • Liscum, E. and Briggs, W.R. 1996. Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol. 112: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Lomax, T.L., Muday, G.K. and Rubery, P.H. 1995. Auxin transport. In: P.J. Davies (Ed.) Plant Hormones, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 509–530.

    Chapter  Google Scholar 

  • Maniatis, T. 1999. A ubiquitin ligase complex essential for the NF-B, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 13: 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Garcia, J.F., Huq, E. and Quail, P.H. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863.

    Article  PubMed  CAS  Google Scholar 

  • Mattsson, J., Sung, Z.R. and Berleth, T. 1999. Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979–2991.

    PubMed  CAS  Google Scholar 

  • Nagpal, P., Walker, L., Young, J., Sonawala, A., Timpte, C., Estelle, M. and Reed, J.W. 2000. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 123: 563–573.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, F. and Schäfer, E. 2000. Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants EMBO J. 19: 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, T. and Dengler, N. 1997. Leaf vascular pattern formation. Plant Cell 9: 1121–1135.

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser, J.L., Feldman, L.J. and Zambryski, P.C. 2000. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127: 3877–3888.

    PubMed  CAS  Google Scholar 

  • Neumann, C. and Cohen, S. 1997. Morphogens and pattern formation. BioEssays 19: 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. 1991. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3: 677–684.

    PubMed  CAS  Google Scholar 

  • Ouellet, F., Overvoorde, P.J. and Theologis, A. 2001. IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841.

    PubMed  CAS  Google Scholar 

  • Przemeck, G.K.H., Mattsson, J., Hardtke, C.S., Sung, Z.R. and Berleth, T 1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200: 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.W., Elumalai, R.P. and Chory, J. 1998. Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signalling and hypocotyl elongation. Genetics 148: 1295–1310.

    PubMed  CAS  Google Scholar 

  • Reinhardt, D., Mandel, T. and Kuhlemeier, C. 2000. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12: 507–518.

    PubMed  CAS  Google Scholar 

  • Rogg, L.E., Lasswell, J. and Bartel, B. 2001. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13: 465–480.

    PubMed  CAS  Google Scholar 

  • Rouse, D., Mackay, P., Stirnberg, P., Estelle, M. and Leyser, O. 1998. Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371–1373.

    Article  PubMed  CAS  Google Scholar 

  • Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G. and Estelle, M. 1997. Reduced naph-thylphthalamic acid bidning in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9: 745–757.

    PubMed  CAS  Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P and Scheres, B. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, T. 1981. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. 9: 152–262.

    Google Scholar 

  • Sachs, T. 1991. Cell polarity and tissue patterning in plants. Development (Suppl. 1): 83–93.

    Google Scholar 

  • Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M. and Okada, K. 2001. Arabidopsis nphl and npll: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  • Sessions, R.A. 1997. Arabidopsis (Brassicaceae) flower development and gynoecium patterning in wild-type and ettin mutants. Am. J. Bot. 84: 1179–1191.

    Article  PubMed  CAS  Google Scholar 

  • Sessions, R.A. and Zambryski, P.C. 1995. Arabidopsis gynoecium structure in the wild-type and ettin mutants. Development 121: 1519–1532.

    PubMed  CAS  Google Scholar 

  • Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A. and Zambryski, P.C. 1997. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124: 4481–4491.

    PubMed  CAS  Google Scholar 

  • Sieburth, L. 1999. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol. 121: 1179–1190.

    Article  PubMed  CAS  Google Scholar 

  • Sitbon, F. and Perrot-Rechenmann, C. 1997. Expression of auxin-regulated genes. Physiol. Plant. 100: 443–455.

    Article  CAS  Google Scholar 

  • Soh, M.S., Hong, S.H., Kim, B.C., Vizir, I., Park, D.H., Choi, G., Hong, M.Y., Chung, Y.-Y., Furuya, M. and Nam, H.G. 1999. Regulation of both light-and auxin-mediated development by the Arabidopsis IAA3/SHY2 gene. J. Plant Biol. 42: 239–246.

    Article  CAS  Google Scholar 

  • Stowe-Evans, E.L., Harper, R.M., Motchoulski, A.V. and Liscum, E. 1998. NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol. 118: 1265–1275.

    Article  PubMed  CAS  Google Scholar 

  • Stowe-Evans, E.L., Luesse, D.R. and Liscum, E. 2001. The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol. 126: 826–834.

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu, K., Watahiki, M.K. and Yamamoto, K.T. 1999. Evidences for a dominant mutation of IAA19 that disrupts hypocotyl growth curvature responses and alters auxin sensitivity. 10th International Conference on Arabidopsis Research, Melbourne, Australia.

    Google Scholar 

  • Theologis, A. 1986. Rapid gene regulation by auxin. Annu. Rev. Plant Physiol. 37: 407–438.

    Article  CAS  Google Scholar 

  • Tian, Q. and Reed, J.W. 1999. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126: 711–721.

    PubMed  CAS  Google Scholar 

  • Timpte, C.S., Wilson, A.K. and Estelle, M. 1992. Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. Planta 188: 271–278.

    Article  CAS  Google Scholar 

  • Timpte, C., Wilson, A. and Estelle, M. 1994. The axr2-l mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138: 1239–1249.

    PubMed  CAS  Google Scholar 

  • Tsiantis, M., Brown, M.I.N., Skibinski, G. and Langdale, J.A. 1999. Disruption of auxin transport is associated with aberrant leaf development in maize. Plant Physiol. 121: 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  • Tuominen, H., Puech, L., Fink, S. and Sundberg, B. 1997. A radial concentration gradient in indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol. 115: 577–585.

    PubMed  CAS  Google Scholar 

  • Ulmasov, T., Hagen, G. and Guilfoyle, T.J. 1997a. ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868.

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T.J. 1997b. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971.

    PubMed  CAS  Google Scholar 

  • Ulmasov, T., Hagen, G. and Guilfoyle, T.J. 1999a. Dimerization and DNA binding of auxin response factors. Plant J. 19: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov, T., Hagen, G. and Guilfoyle, T.J. 1999b. Activation and repression of transcription by auxin-response factors. Proc. Natl. Acad. Sci. USA 96: 5844–5849.

    Article  PubMed  CAS  Google Scholar 

  • Uggla, C., Mellerowicz, E.J. and Sundberg, B. 1998. Indole-3-acetic acid control cambial growth in scots pine by positional signaling. Plant Physiol. 117: 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Uggla, C., Moritz, T., Sandberg, G. and Sundberg, B. 1996. Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93: 9282–9286.

    Article  PubMed  CAS  Google Scholar 

  • Vision, T.J., Brown, D.G. and Tanksley, S.D. 2000. The origins of genomic duplications in Arabidopsis. Science 290: 2114–2117.

    Article  PubMed  CAS  Google Scholar 

  • Walker, L. and Estelle, M. 1998. Molecular mechanisms of auxin action. Curr. Opin. Plant Biol. 1: 434–439.

    Article  PubMed  CAS  Google Scholar 

  • Watahiki, M.K. and Yamamoto, K. 1997. The massagul mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol. 115: 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Watahiki, M.K., Tatematsu, K., Fujihira, K., Yamamoto, M. and Yamamoto, K. 1999. The MSG1 and AXR1 genes of Arabidopsis are likely to act independently in growth-curvature responses of hypocotyl. Planta 207: 362–369.

    Article  PubMed  CAS  Google Scholar 

  • Went, F.W. and Thimann, K.V. 1937. Phytohormones, Macmillan, New York.

    Google Scholar 

  • Wilson, A.K., Pickett, F.B., Turner, J.C. and Estelle, M. 1990. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol. Gen. Genet. 222: 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. 2000. Degradation of Aux/IAA proteins is essential for normal auxin signaling. Plant J. 21: 553–562.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Catherine Perrot-Rechenmann Gretchen Hagen

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Liscum, E., Reed, J.W. (2002). Genetics of Aux/IAA and ARF action in plant growth and development. In: Perrot-Rechenmann, C., Hagen, G. (eds) Auxin Molecular Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0377-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0377-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3917-8

  • Online ISBN: 978-94-010-0377-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics