Molecular Dynamics Simulation of Thin Film Growth with Energetic Atoms

  • Charles M. Gilmore
  • James A. Sprague
Part of the NATO Science Series book series (NAII, volume 55)

Abstract

Hyperthermal atoms are deposited upon a substrate in thin film deposition processes. Even when the atoms in the vapor phase are not intentionally accelerated to the substrate, the vapor phase atoms are attracted to the substrate surface with a potential of a few electron volts (eV) because of the interaction between the incoming atom and the substrate. Some deposition processes such as ion beam assisted deposition(IBAD), ion beam deposition (IBD), sputter deposition(S), and plasma enhanced chemical vapor deposition (PECVD)result in ions striking the substrate with energies from 10 to over 100 eV as shown in figure 1 [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hubler, G.K.(1995) Microstructural evolution during ion beam assisted deposition Mat. Res. Soc. Symp. Proc. 354, 45–55Google Scholar
  2. 2.
    Bland, R.D., Kominiak, G.J. and Mattox. D.M. (1974) Effect of ion bombardment during deposition on thick metal and ceramic deposits, J. Vac. Si Technol. 11, 671 (1974)CrossRefGoogle Scholar
  3. 3.
    Thornton, J. A. and Hoffman, D. W., (1989) Stress-related effects in thin films, Thin Solid Films, 171, 5–31.CrossRefGoogle Scholar
  4. 4.
    Greene, J. E. and Barnett, S. A. (1982), Ion-surface interactions during vapor phase crystal growth by sputtering MBE, and plasma-enhanced CVD: Applications to semiconductors, J. Vac. Sci. Technol. 21(2), 235–302.CrossRefGoogle Scholar
  5. 5.
    Windischmann, H, (1991) Intrinsic stress in sputtered thin films, J. Vac. Sci. Technol. A 9(4), 2431–2436.CrossRefGoogle Scholar
  6. 6.
    Baibich, M. N., Broto, J. M., Fert, A., Nguyen-Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J. (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61(21), 2472–2475.CrossRefGoogle Scholar
  7. 7.
    Levy, P.M., Zhang S, and Fert, A. (1990) Electrical conductivity of magnetic multilayered structures, Phys. Rev. Lett. 65(13) 1643–1646.CrossRefGoogle Scholar
  8. 8.
    Fullerton, E.E., Kelly, D.M., Guimpel, J. and Schuller, I.K. (1992) Roughness and giant magnetoresistance in Fe/Cr superlattices, Phys. Rev. Lett. 68(6), 859–862.CrossRefGoogle Scholar
  9. 9.
    Schwebel, C, Meyer, F., Gautherin, G., and Pellet, C., (1986) Growth of silicon homoepitaxial thin films by ultra high vacuum ion beam sputter deposition, J.Vac. Sci.Techol. B, 4(5), 1153–1158.CrossRefGoogle Scholar
  10. 10.
    Al-Bayati, A.H., Todorov, S.S., Boyd. K.J., Marton, D., and Rabalais, J.W. (1995) Homoepitaxy and controlled oxidation of silicon at low temperatures using low-energy ion beams J. Vac. Sci. Technol. B. 13(4) 1639–1644.CrossRefGoogle Scholar
  11. 11.
    Eaglesham, D.J., Gossmann, H.J. and Cerullo, M. (1990) Limiting thickness hepi for epitaxial growth and room temperature Si growth on Si(100), Phys. Rev. Lett. 65(10) 1227–1230.CrossRefGoogle Scholar
  12. 12.
    Vancauwenberghe, O., Herbots, N., and Hellman, O.C. (1991) A quantitative model of point defect diffusivity and recombination in ion beam deposition and combined ion and molecular deposition, J.Vac. Sci. Tchnol.B. 9(4) 2027–2033.CrossRefGoogle Scholar
  13. 13.
    Gordon, J.S., Armour, D.G., Donnelly. S.E., van-den Berg, J., Marton, D., and Rabalais, J.W. (1991) A dual-source low-energy mass-analysed ion beam system for semiconductor epitaxial and novel materials growth, Nucl. Instrm. Meth., Phys. Res., B 59/60(1), 312–315.CrossRefGoogle Scholar
  14. 14.
    Brice, D.K., Tsao, J.Y., and Picraux, S.T. (1989) Partitioning of ion-induced surface and bulk displacelments, Nucl. Instrum. Mehtods B 44, 68–78.CrossRefGoogle Scholar
  15. 15.
    Ghaly, M., Nordlund, K., and Averback, R. S. (1999) Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids, Phil. Mag. A 79(4) 795–820.CrossRefGoogle Scholar
  16. 16.
    Davis, P.J., and Polonsky, I. (1965) Numerical interpolation, differentiation, and integration, Handbook of mathematical functions, Eds. Abramowitz, M. and Stegun, I.A., National Bureau of Standards, Applied mathematics series 55, 3 rd printing, U.S. Government Printing Office, Washington D.C. 875–920.Google Scholar
  17. 17.
    Beeman, D., (1976) Some multistep methods for use in molecular dynamics calculations, J. Comput. Phys. 20, 130–139.CrossRefGoogle Scholar
  18. 18.
    Leamy, H.J., Gilmer, G.H. and Dirks, A.G. (1980) The microstructure of vapor deposited thin films, in Current Topics in Materials Science, Vol. 6 ed. Kaldis, E. North-Holland, New York, 309–344.Google Scholar
  19. 19.
    Gordon, R.G. and Kim, Y.S. (1972) Theory for the forces between closed-shell atoms and molecules, J. Chem. Phys. 56, 3122–3133.CrossRefGoogle Scholar
  20. 20.
    Muller, K.-H. (1987) Ion-beam-induced epitaxial vapor-phase growth: A molecular dynamics study, Phys. Rev. B. 35(15),7906–7913.CrossRefGoogle Scholar
  21. 21.
    Muller, K.-H. (1987) Role of incident kinetic energy of adatoms in thin film growth, Surf. Sci. 184, L375-382.Google Scholar
  22. 22.
    Schneider, M., Rahman, A., and Schuller, I.K. (1985) Role of relaxation in epitaxial growth, Phys. Rev. Lett. 55(6), 604–606.CrossRefGoogle Scholar
  23. 23.
    Gilmore, C.M. and Sprague, J.A. (1991) Molecular-dynamics simulation of the energetic deposition of Ag thin films, Phys. Rev. B, 44(16) 8950–8957.CrossRefGoogle Scholar
  24. 24.
    Sprague. J.A. and Gilmore, C.M.(1992) Molecular dynamics simulations of low-energy atom-surface interactions MRS Proc. Pittsburgh, PA, 268,115–125.Google Scholar
  25. 25.
    Gilmore, C.M. and Sprague, J.A. (1992) A molecular dynamics analysis of low energy atom-surface interaction during energetic deposition of silver thin films, Surf. Coatings Technol. 51, 324–327CrossRefGoogle Scholar
  26. 26.
    Gilmore, C.M. and Sprague, J.A. (1997) Computer modeling the deposition of nanoscale thin films. Nanostruct. Mat. 9, 643–650.CrossRefGoogle Scholar
  27. 27.
    Gilmore, C.M. and Sprague. J.A. (1993) Molecular dynamics simulations of thin film growth on Ag(100) and (111) with energetic Ag atoms, Nanostruct. Mat. 2, 301–310.CrossRefGoogle Scholar
  28. 28.
    Sprague. J.A. and Gilmore, C.M. (1996) Molecular dynamics simulations of film-substrate interface mixing in the energetic deposition of fcc metals, Thin Solid Films, 272, 244–254CrossRefGoogle Scholar
  29. 29.
    Gilmore, C.M. and Sprague. J.A., Effect of incident energy on defect formation during Cu deposition, to be publishedGoogle Scholar
  30. 30.
    Foiles, S.M., Baskes, M.I., and Daw, M.S. (1986) Embedded-atom-method functions for the fee metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983–7991.CrossRefGoogle Scholar
  31. 31.
    Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J. (1984) Universal features of the equation of state of metals, Phys. Rev. B. 29, 2963–2969CrossRefGoogle Scholar
  32. 32.
    Sprague, J. A. (2001) unpublished results.Google Scholar
  33. 33.
    Zhang, Q. Y., Tang, J. Y., and Zhao, G. Q. (1998) Investigation of the energetic deposition of Au (001) films by molecular-dynamics simulation, Nucl. Instrum. and Meth. in Phys. Res. B 135, 289–294.CrossRefGoogle Scholar
  34. 34.
    Zhang, Q. Y., Ma, T. C., Pan, Z. Y., and Tang, J. Y. (2000) The role of energetic atoms in the deposition of Au/Au (001) thin films — a computer simulation study, Surf. and Coatings Technol. 128–129, 175–180.CrossRefGoogle Scholar
  35. 35.
    Trushin, O. S., Kokko, K., and Salo, P. T. (1999) Film-substrate interface mixing in the energetic deposition of Ag on Cu (001), Surface Science 442, 420–430.CrossRefGoogle Scholar
  36. 36.
    Zhou, X. W. and Wadley, H. N. G. (1999) Hyperthermal vapor deposition of copper: athermal and biased diffusion effects, Surface Science 431(1–3) 42–57.CrossRefGoogle Scholar
  37. 37.
    Zhou, X. W. and Wadley, H. N. G. (1999) Hyperthermal vapor deposition of copper: reflection and resputtering effects, Surface Science 431(1–3) 58–73.CrossRefGoogle Scholar
  38. 38.
    Zhou, X. W. and Wadley, H. N. G. (1998) Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: The effects of adatom incident energy, J. Appl. Phys. 84(4) 2301–2315.CrossRefGoogle Scholar
  39. 39.
    Zhou, X. W. and Wadley, H. N. G. (2000) The low energy ion assisted control of interfacial structure: Ion incident energy effects, J. Appl. Phys. 87(12) 8487–8496.CrossRefGoogle Scholar
  40. 40.
    Oh, D. J. and Johnson, R. A. (1988) Simple embedded atom method model for fcc and hep metals, J. Mater. Res. 3(3) 471–478.CrossRefGoogle Scholar
  41. 41.
    Sprague, J.A. private communicationGoogle Scholar
  42. 42.
    Wilson, W.D., Haggmark, L.G., and Biersack, J.B. (1977) Calculations of nuclear stopping, ranges, and straggling in the low-energy region, Phys. Rev.B. 15(5) 2458–2468CrossRefGoogle Scholar
  43. 43.
    Abrams, C. F. and Graves, D. B. (1999), Cu sputtering and deposition by off-normal, near-threshold Cu+ bombardment: Molecular dynamics simulations, J. Appl. Phys. 86(4) 2263–2267.CrossRefGoogle Scholar
  44. 44.
    Hanson, D. E., Kress, J. D., Voter, A. F., and Liu, X.-Y. (1999) Trapping and desorption of energetic Cu atoms on Cu (111) and (001) surfaces at grazing incidence, Phys. Rev. B 60(16) 11723–11729.CrossRefGoogle Scholar
  45. 45.
    Robbemond, A. and Thijsse, B. J. (1997) Ion-beam assisted deposition of thin molybdenum films studied by molecular dynamics simulation, Nucl. Instrum. and Meth. in Phys. Res. B 127/128, 273–277.CrossRefGoogle Scholar
  46. 46.
    Klaver, P., Haddeman, E., and Thijsse, B. J. (1999) Atomic-scale effects of sub-keV ions during growth and subsequent ion-beam analysis of molybdenum thin films, Nucl. Instrum. and Meth. in Phys. Res. B 153, 228–235.CrossRefGoogle Scholar
  47. 47.
    Rakotomahevitra, A., Wille, L. T., and Rakotomalala, M. S. (2000) Atomistic modeling of ultrathin Fe films on Cu (111), Mat. Res. Soc. Symp. Proc. Vol. 616, 183–188.CrossRefGoogle Scholar
  48. 48.
    Rabalais, J.W., Al-Bayati, A.H., Boyd, K.J., Marton. D., Kulik, J., Zhang, Z., and Chu. W.K. (1996) Ion-energy effects in silicon ion beam epitaxy, Phys.Rev, B. 53(16) 10781–10792.CrossRefGoogle Scholar
  49. 49.
    Orrman-Rossiter, K.G., Al-Bayati, A.H., Armour, D.G., Donnelly, S.E., and van-den Berg, J.A. (1991) Ion beam deposited epitaxial thin silicon films, Nucl. Inst. Meth. Phys. Res. B 59/60(1) 197–202.CrossRefGoogle Scholar
  50. 50.
    Orrman-Rossiter, K.G., Mitchell, D.R.G., Donnelly. S.E., Rossouw, C.J., Glanvill, S.R., Miller, P.R., Al-Bayati, A.H., Van-den-Berg, J.A. and Armour. D.G. (1990) Evidence for competing growth phases in ion-beam-deposited epitaxial silicon films, Phil.Mag. Lett. 61, 311–318.CrossRefGoogle Scholar
  51. 51.
    Stillinger, F.H. and Weber, T.A. (1985) Computer simulation of local order in condensed phases of silicon, Phys. Rev. B. 31(8), 5262–5271CrossRefGoogle Scholar
  52. 52.
    Tersofly. (1988) New empirical approach for the structure and energy of covalent systems. Phys. Rev. B., 37(12) 6991–7000.CrossRefGoogle Scholar
  53. 53.
    Dodson, B.W. (1987) Molecular-dynamics simulation of low-energy beam deposition of silicon, J. Vac. Sci. Technol. B 5(5), 1393–1398.CrossRefGoogle Scholar
  54. 54.
    Dodson, B.W., and Taylor, P.A. (1987) Interaction of a 10 eV silicon beam with the Si(111) surface: A molecular dynamics study, J. Mater. Res. 2(6), 805–808.CrossRefGoogle Scholar
  55. 55.
    Dodson. B.W. (1987) Atomistic simulation of silicon beam deposition, Phys. Rev. B 36(2), 1068–1074.CrossRefGoogle Scholar
  56. 56.
    Kitabatake, M., Fons, P. and Greene, J.E., (1990) Molecular dynamics simulations of low-energy particle bombardment effects during vapor-phase crystal growth: 10 eV Si atoms incident on Si(001)2xlsurfaces, J. Vac. Sci. Technol. A 8(5) 3726–3735.CrossRefGoogle Scholar
  57. 57.
    Gilmer, G.H., Grabow, M.H. and Bakker, A.F. (1990) Modeling of epitaxial growth, Mater. Sci. Engr. B(6), 101–112.Google Scholar
  58. 58.
    Gilmer. G.H., and Roland, C. (1994) Simulations of crystal growth:Effects of atomic beam energy, App. Phys. Lett. 65(7) 824–826.CrossRefGoogle Scholar
  59. 59.
    Garrison, B.J., Miller, M.T., and Brenner, D.W. (1988) Kinetic energy enhanced molecular beam epitaxial growth of Si{100}, Chem. Phys. Lett. 146(6), 553–556.CrossRefGoogle Scholar
  60. 60.
    Fallon, P. J., Veerasamy, V. S., Davis, C. A., Robertson, J., Amartunga, G. A. J., Milne, W. I., and Koskinen, J. (1993) Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B 48(7) 4777–4782.CrossRefGoogle Scholar
  61. 61.
    Kulik, J., Lempert, G. D., Grossman, E., Marton, D., Rablais, J. W., and Lifshitz, Y. (1995) sp3 content of mass-selected ion-beam-deposited carbon films determined by inelastic and elastic electron scattering, Phys. Rev. B 52(22) 15812–15822.CrossRefGoogle Scholar
  62. 62.
    Kaukonen, H.-P. and Nieminen, R. M. (1992) Molecular dynamics simulation of the growth of diamondlike films by energetic carbon-atom beams, Phys. Rev. Lett. 68(5) 620–623.CrossRefGoogle Scholar
  63. 63.
    Kaukonen, M. and Nieminen, R. M. (2000) Atomic-scale modeling of the ion-beam-induced growth of amorphous carbon, Phys. Rev. B 61(4) 2806–2811.CrossRefGoogle Scholar
  64. 64.
    Lifshitz, Y., Kasi, S. R., and Rablais, J. W. (1989) Subplantation model for film growth from hyperthermal species: application to diamond, Phys. Rev. Lett. 63(11) 1290–1293.CrossRefGoogle Scholar
  65. 65.
    Marks, N. A., McKenzie, D. R., and Pailthorpe, B. A. (1996) Molecular dynamics study of compressive stress generation, Phys. Rev. B 53(7) 4117–4124.CrossRefGoogle Scholar
  66. 66.
    Uhlmann, S., Frauenheim, T., and Lifshitz, Y. (1998) Molecular-dynamics study of the fundamental processes involved in subplantation of diamondlike carbon, Phys. Rev. Lett. 81(3) 641–644.CrossRefGoogle Scholar
  67. 67.
    Jager, H. U. and Albe, K. (2000) Molecular dynamics simulations of steady-state growth of ion-deposited tetrahedral amorphous carbon films, J. Appl. Phys. 88(2) 1129–1135.CrossRefGoogle Scholar
  68. 68.
    Brenner, D. W. (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys, Rev. B 42(15) 9458–9471.CrossRefGoogle Scholar
  69. 69.
    Brenner, D. W. (1992) Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films [Phys. Rev. B 42 9458 (1990)], Phys. Rev. B 46(3) 1948.CrossRefGoogle Scholar
  70. 70.
    Kester, D. J. and Messier, R. (1992) Phase control of cubic boron nitride thin films, J. Appl. Phys. 72(2) 504–513.CrossRefGoogle Scholar
  71. 71.
    Hofsass, H., Feldermann, M., Sebastian, M., and Ronning, C. (1997) Thresholds for the phase formation of cubic boron nitride thin films, Phys. Rev. B 55(19) 13230–13233.CrossRefGoogle Scholar
  72. 72.
    Albe, K. and Moller, W. (1998) Modeling of boron nitride: atomic scale simulations on thin film growth, Computational Materials Science 10, 111–115.CrossRefGoogle Scholar
  73. 73.
    Coronell, D.G., Hansen, D.E., Voter, A.F., Liu, C-L., Liu, X-Y., and Kress, J.D. (1998) Molecular dynamics-based ion-surface interaction models for ionized physical vapor deposition feature scale simulations, Appl. Phys. Lett. 73(26) 3860–3862CrossRefGoogle Scholar
  74. 74.
    Ogale, S.B. and Madhukar, (1989) Low-energy ion beam effects on the molecular beam epitaxial growth of III–IV compound semiconductors: A Monte Carlo simulation study, Appl. Phys. Lett. 55(11) 1115–1117.CrossRefGoogle Scholar
  75. 75.
    Voter, A. F. (1998) Parallel replica method for dynamics of infrequent events, Phys. Rev. B 57(22) R13985–R13988.CrossRefGoogle Scholar
  76. 76.
    Voter, A. F. (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events, Phys. Rev. Lett. 78(20) 3908–3911.CrossRefGoogle Scholar
  77. 77.
    Sorensen, M. R. and Voter, A. F. (2000) Temperature-accelerated dynamics for simulation of infrequent events, J. Chem. Phys. 112(21) 9599–9606.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Charles M. Gilmore
    • 1
    • 2
  • James A. Sprague
    • 2
  1. 1.Institute for Materials Science Mechanical and Aerospace Engineering The School of Engineering and Applied ScienceThe George Washington UniversityWashington, D.C.USA
  2. 2.Surface Modification Branch Materials Science and Technology DivisionNaval Research LaboratoryWashington, DCUSA

Personalised recommendations