Skip to main content

Abstract

In vitro produced (IVP) embryos often exhibit wide variations in developmental competence and viability, considerably more than are exhibited by embryos that develop in vivo. These anomalies in IVP embryos may be due to heterogeneity of oocyte quality, suboptimal culture conditions, disturbances in gene expression, or most likely a combination of these factors (Ho et al., 1994 Roth et al., 1994; McKiernan and Bavister, 1998; Hasler, 1998; Schramm and Bavister, 1999; Doherty et al., 2000; Hyttel et al., 2000; Niemann and Wrenzycki, 2000; Wrenzycki et al., 2001). In research studies or in clinical applications with domesticated animals, cats, non-human primates and humans, oocytes used for IVP are usually collected from a heterogeneous cohort of ovarian follicles that include oocytes which normally might not be ovulated and/or are deficient in developmental competence. Moreover, although major improvements in culture media for oocyte maturation and embryo culture have been made in the last decade or so, IVP technology is still far from perfect (Bavister, 1995; Thompson and Peterson, 2000; Gardner et al., 2000; Vanroose et al., 2001. It is now clear that gene expression, including the critical transition from maternal to embryonic genome control, is subject to perturbations by culture media components, although the mechanism of this disturbance is not understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bavister BD, Boatman DE, Leibfried L, Loose M, Vernon MW. 1983. Fertilization and cleavage of rhesus monkey oocytes in vitro. Biol Reprod 28:983–999.

    Article  PubMed  CAS  Google Scholar 

  • Bavister BD. 1995. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1:91–148.

    Article  PubMed  CAS  Google Scholar 

  • Brownell MS, Warner CM. 1988. Ped gene expression by embryos cultured in vitro Biol Reprod 39:806–811.

    Article  PubMed  CAS  Google Scholar 

  • Cao W, Brenner CA, Alikani M, Cohen J, Warner CM. 1999. Search for a human homologue of the mouse Ped gene. Mol Hum Reprod 5:541–547.

    Article  PubMed  CAS  Google Scholar 

  • Comizzoli P, Marquant-LeGuienne B, Heyman Y, Renard JP. 2000. Onset of the first S-phase is determined by a paternal effect during the GI-phase in bovine zygotes. Biol Reprod 62:1677–1684.

    Article  PubMed  CAS  Google Scholar 

  • Cummins JM, Wilson, LM, Breen TM, Hennessey JF. 1986. A formula for scoring human embryo growth rates in IVF: value in predicting pregnancy and in comparison with other estimates of embryo quality. J In Vitro Fert Embryo Transfer 3:284–295.

    Article  CAS  Google Scholar 

  • Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. 2000. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535.

    Article  PubMed  CAS  Google Scholar 

  • Gardner DK, Pool TB, Lane M. 2000. Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin Reprod Med 18:205–218.

    Article  PubMed  CAS  Google Scholar 

  • Goldbard SB, Warner CM. 1982. Genes affect the timing of early mouse embryo development. Biol Reprod 27:419–424.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales DS, Bavister BD. 1995. Zona pellucida escape by hamster blastocysts in vitro is delayed and morphologically different compared with zona escape in vivo. Biol Reprod 52:470–480.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales DS, Pinheiro JC, Bavister BD. 1995. Prediction of the developmental potential of hamster embryos in vitro by precise timing of the third cell cycle. J Reprod Fertil 105:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Grisart B, Massip A, Dessy F. 1994. Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J Reprod Fertil 101:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Hasler JF. 1998. The current status of oocyte recovery, in vitro embryo production, and embryo transfer in domestic animals, with an emphasis on the bovine. J Anim Sci 76:52–74.

    Google Scholar 

  • Hillary FL, Parrish JJ, First NL. 1990. Bull specific effect on fertilization and embryo development in vitro. Theriogenology 33:249.

    Article  Google Scholar 

  • Ho Y, Doherty AS, Schultz RM. 1994. Mouse preimplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol Reprod Dev 38:31–141.

    Article  Google Scholar 

  • Ho Y, Wigglesworth K, Eppig, JJ Schultz RM. 1995. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 41:232–238.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel P, Viuff D, Laurincik J, Schmidt M, Thomsen PD, Avery B, Callesen H, Rath D, Niemann H, Rosenkranz C, Schellander K, Ochs RL, Greve T. 2000. Risks of in vitro production of cattle and swine embryos: aberrations in chromosome numbers, ribosomal RNA gene activation and perinatal physiology. Hum Reprod 15:87–97.

    Article  PubMed  CAS  Google Scholar 

  • Latham KE. 1999. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol 193:71–124.

    Article  PubMed  CAS  Google Scholar 

  • Martin KL, Leese HJ. 1999. Role of developmental factors in the switch from pyruvate to glucose as the major exogenous energy substrate in the pre-implantation mouse embryo. Reprod Fertil Dev 11:425–433.

    Article  PubMed  CAS  Google Scholar 

  • McElhinny AS, Exley GE, Warner CM. 2000. Painting Qa-2 onto Ped slow preimplantation embryos increases the rate of cleavage. Am J Reprod Immunol 44:52–58.

    Article  PubMed  CAS  Google Scholar 

  • McKiernan SH, Bavister BD. 1994. Timing of development is a critical parameter for predicting successful embryogenesis. Hum Reprod 9:2123–2129.

    PubMed  CAS  Google Scholar 

  • McKiernan SH, Bavister BD. 1998. Gonadotropin stimulation of donor females decreases post-implantation viability of cultured 1-cell hamster embryos. Hum Reprod 13:724–729.

    Article  PubMed  CAS  Google Scholar 

  • Memili E, First NL. 2000. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote 8:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed OA, Bustin M, Clarke HJ. 2001. High-mobility group proteins 14 and 17 maintain the timing of early embryonic development in the mouse. Dev Biol 229:237–249.

    Article  PubMed  CAS  Google Scholar 

  • Munne S, Marquez C, Reing A, Garrisi J, Alikani M. 1998. Chromosome abnormalities in embryos obtained after conventional in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril 69:904–908.

    Article  PubMed  CAS  Google Scholar 

  • Munne S, Cohen J. 1998. Chromosome abnormalities in human embryos. Hum Reprod Update 4:842–855.

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Wrenzycki C. 2000. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53:21–34.

    Article  PubMed  CAS  Google Scholar 

  • Pinyopummintr T, Bavister BD. 1991. In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically-defined, protein-free culture media. Biol Reprod 45:736–742.

    Article  PubMed  CAS  Google Scholar 

  • Pinyopummintr T, Bavister BD. 1996. Effects of amino acids on in vitro development of cleavage stage bovine embryos into blastocysts. Reprod Fertil Dev 8:835–841.

    Article  PubMed  CAS  Google Scholar 

  • Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg ES. 2000. The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil Steril 73:558–564.

    Article  PubMed  CAS  Google Scholar 

  • Roth TL, Swanson WF, Wildt DE. 1994. Developmental competence of domestic cat embryos fertilized in vitro versus in vitro. Biol Reprod 51:441–451.

    Article  PubMed  CAS  Google Scholar 

  • Sakkas D, Shoukir Y, Chardonnens D, Bianchi PG, Campana A. 1998. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod 13:182–187.

    Article  PubMed  CAS  Google Scholar 

  • Schramm RD, Bavister BD. 1996. Development of in vitro fertilized primate embryos into blastocysts in chemically-defined, protein-free culture medium. Hum Reprod 11:1690–1697.

    Article  PubMed  CAS  Google Scholar 

  • Schramm RD, Bavister BD. 1999. Onset of nucleolar and extranucleolar transcription and expression of fibrillarin in macaque embryos developing in vitro. Biol Reprod 60:721–728.

    Article  PubMed  CAS  Google Scholar 

  • Seshagiri PB, Hearn JP. 1992. Protein-free culture media that support in vitro development of Rhesus monkey blastocysts. ARTA 3:225–232.

    Google Scholar 

  • Seshagiri PB, McKenzie DI, Bavister BD, Williamson JL, Aiken JM. 1992. Golden hamster embryonic genome activation occurs at the 2-cell stage: correlation with major developmental changes. Molec Reprod Dev 32:229–235.

    Article  PubMed  CAS  Google Scholar 

  • Shire JGM, Whitten WK. 1980a. Genetic variation in the timing of first cleavage in mice: effect of maternal genotype. Biol Reprod 23:369–376.

    Article  PubMed  CAS  Google Scholar 

  • Shire JGM, Whitten WK. 1980b. Genetic variation in the timing of first cleavage in mice: effect of paternal genotype. Biol Reprod 23:363–368.

    Article  PubMed  CAS  Google Scholar 

  • Shoukir Y, Campana A, Farley T, Sakkas D. 1997. Early cleavage of in vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum Reprod 12:1531–1536.

    Article  PubMed  CAS  Google Scholar 

  • Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. 1992. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in vitro fertilization and embryo transfer programme. Hum Reprod 7:117–119.

    PubMed  CAS  Google Scholar 

  • Telford NA, Watson AJ, Schultz GA. 1990. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Molec Reprod Dev 26:90–100.

    Article  PubMed  CAS  Google Scholar 

  • Tesarik J, Kopecny V, Plachot M, Mandelbaum J. 1988. Early morphological signs of embryonic gene expression in human preimplantation development as revealed by quantitative electron microscopy. Devel Biol 128:15–20.

    Article  CAS  Google Scholar 

  • Thompson JG, Peterson AJ. 2000. Bovine embryo culture in vitro: new developments and post-transfer consequences. Hum Reprod 15:59–67.

    Article  PubMed  Google Scholar 

  • Van Soom A, Ysebaert MT, de Kruif A. 1997a. Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol Reprod Dev 47:47–56.

    Article  PubMed  Google Scholar 

  • Van Soom A, Boerjan ML, Bols PE, Vanroose G, Lein A, Coryn M, de Kruif A. 1997b. Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol Reprod 57:1041–1049.

    Article  PubMed  Google Scholar 

  • Vanroose G, Van Soom A, de Kruif A. 2001. From co-culture to defined medium: state of the art and practical considerations. Reprod Domest Anim, 36:25–28.

    Article  PubMed  CAS  Google Scholar 

  • Warner CM, Cao W, Exley GE, McElhinny AS, Alikani M, Cohen J, Scott RT, Brenner CA. 1998. Genetic regulation of egg and embryo survival. Hum Reprod 13:178–190.

    Article  PubMed  Google Scholar 

  • Winston NJ, Braude PR, Pickering SJ, George MA, Cant A, Currie J, Johnson MH. 1991. The incidence of abnormal morphology and nucleocytoplasmic ratios in 2-, 3-and 5-day human pre-embryos. Hum Reprod 6:17–24.

    PubMed  CAS  Google Scholar 

  • Wrenzycki C, Herrmann D, Keskintepe L, Martins AJ, Sirisathien S, Brackett B, Niemann H. 2001. Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum Reprod 16:893–901.

    Article  PubMed  CAS  Google Scholar 

  • Yadav BR, King WA, Betteridge KJ. 1993. Relationships between the completion of first cleavage and the chromosomal complement, sex and developmental rates of bovine embryos generated in vitro. Mol Reprod Dev 36:434–439.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bavister, B. (2002). Timing of Embryo Development. In: Van Soom, A., Boerjan, M. (eds) Assessment of Mammalian Embryo Quality. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0343-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0343-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3909-3

  • Online ISBN: 978-94-010-0343-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics