Skip to main content

Is the Frequency of Chromosome Abnormalities Influenced by in Vitro Techniques?

  • Chapter
  • 182 Accesses

Abstract

The very specialized process of meiosis and the fact that the zygote is the stem cell of all cells in a new individual make the period of early embryonic development vulnerable to errors of chromosome segregation. If the zygote is aneuploid, i.e. not carrying the normal diploid chromosome set, it is most likely lethal to the embryo. However, major alterations of the genome are more harmful to the embryo than minor alterations. In other words, an additional copy of a chromosome (trisomy) will be less harmful than the presence of an entire extra chromosome set (triploidy), and it is expected that trisomic embryos will develop further than triploid embryos. For example, there are several reports of autosomal and sex chromosome trisomies in live born, although malformed, calves (see Popescu, 1990 for review; Herzog and Hoehn, 1991; Agerholm and Christensen, 1993; Christensen and Juul, 1999; Ducos et al., 2000) but there are no published reports of live born polyploid calves. This is at first surprising since the reports of live born, but severely malformed, triploid or even tetraploid children suggest that polyploid calves might survive to term. The lack of reports of such calves probably reflects the fact that malformed individuals are karyotyped with a higher frequency in humans compared to domestic animals and that malformed calves are of little commercial value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agerholm JS, Christensen K. 1993. Trisomy 22 in a calf. Zentralbl Veterinärmed A 40:576–581.

    Article  PubMed  CAS  Google Scholar 

  • Christensen K, Juul L. 1999. A case of trisomy 22 in a live Hereford calf. Acta Vet Scand 40:85–88.

    PubMed  CAS  Google Scholar 

  • Ducos A, Seguela A, Pinton A, Berland H, Brun-Baronnat C, Darre A, Manesse M, Darre R. 2000. Trisomy 26 mosaicism in a sterile Holstein-Friesian heifer. Vet Rec 146:163–164.

    Article  PubMed  CAS  Google Scholar 

  • Dyrendahl I, Gustavsson I. 1979. Sexual functions, semen characteristics and fertility of bulls carrying the 1/29 translocations. Hereditas 90:281–289.

    Article  PubMed  CAS  Google Scholar 

  • Everett CA, West JD. 1998. Evidence for selection against tetraploid cells in tetraploid/diploid mouse chimaeras before the late blastocyst stage. Genet Res 72:225–228.

    Article  PubMed  CAS  Google Scholar 

  • Fechheimer NS. 1990. Chromosomes of chickens. In: McFeely RA (ed), Advances in Veterinary Science and Comparative Medicine. San Diego, CA: Academic Press 34:169–206.

    Google Scholar 

  • Han YM, Wang WH, Abeydeera LR, Petersen AL, Kim JH, Murphy C, Day BN, Prather RS. 1999. Pronuclear location before the first cell division determines ploidy of polyspermic pig embryos. Biol Reprod 61:1340–1346.

    Article  PubMed  CAS  Google Scholar 

  • Handyside AH, Delhanty JDA. 1997. Preimplantation genetic diagnosis: strategies and surprises. Trends in Genetics 13:270–275.

    Article  PubMed  CAS  Google Scholar 

  • Hare WCD, Singh EL, Betteridge KJ, Eaglesome MD, Randall GCB, Mitchell D, Bilton RJ, Trounson AO. 1980. Chromosomal analysis of 159 bovine embryos collected 12 to 18 days after estrus. Can J Genet Cytol 22:615–626.

    PubMed  CAS  Google Scholar 

  • Hendriksen PJM, Viuff D, Greve T, Vos PLAM, Mullaart E, Bevers MM, Dieleman SJ. 2001. Effect of the origin of bovine oocytes on cell numbers and numerical chromosome aberrations in in vitro embryos collected at day 3 post-insemination. Theriogenology 55:475.

    Google Scholar 

  • Herzog A, Hoehn H. 1991. Two additional cases of autosomal trisomy, 61,XY,+12 and 61,XX,+12, in cattle. Cytogenet Cell Genet 57:211–213.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel P, Xu KP, Smith S, Greve T. 1986. Ultrastructure of in vitro oocyte maturation in cattle. J Reprod Fertil 78:615–625.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Shioya Y, Masuda H, Hanada A, Nakahara T. 1989. Incidence of chromosomal anomalies in early bovine embryos derived from in vitro fertilization. Gamete Res 22:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Nakahara T. 1990. Incidence of embryos with chromosomal anomalies in the inner cell mass among bovine blastocysts fertilized in vitro. Theriogenology 34:683–690.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Hamano S, Kuwayama M, Yamashita M, Ushijima H, Nagaoka S, Nakahara T. 1992. Developmental changes in the incidence of chromosome anomalies of bovine embryos fertilized in vitro. J Experimental Zoology 261:79–85.

    Article  CAS  Google Scholar 

  • James RM, Klerkx AHEM, Keighren M, Flockhart JH, West JD. 1995. Restricted distribution of tetraploid cells in mouse tetraploid-diploid chimaeras. Dev Biol 167:213–226.

    Article  PubMed  CAS  Google Scholar 

  • Kawarsky SJ, Basrur PK, Stubbings RB, Hansen PJ, King WA. 1996. Chromosomal abnormalities in bovine embryos and their influence on development. Biol Reprod 54:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Keighren M, West JD. 1993. Analysis of cell ploidy in histological sections of mouse tissues by DNA-DNA in situ hybridization with digoxigenin-labelled probes. Histochem J 25:30–44.

    Article  PubMed  CAS  Google Scholar 

  • King WA, Guay P, Picard L. 1987. A cytogenetical study of 7-day-old bovine embryos of poor morphological quality. Genome 29:160–164.

    Article  PubMed  CAS  Google Scholar 

  • King WA. 1990. Chromosome abnormalities and pregnancy failure in domestic animals. In: McFeely RA (ed), Advances in Veterinary Science and Comparative Medicine. San Diego, CA: Academic Press 34:229–250.

    Google Scholar 

  • Kobayashi J, Sekimoto A, Uchida H, Wada T, Sasaki K, Sasada H, Umezu M, Sato E. 1998. Rapid detection of male-specific DNA sequence in bovine embryos using fluorescence in situ hybridization. Mol Reprod Dev 51:390–394.

    Article  PubMed  CAS  Google Scholar 

  • Kola I, Trounson A, Dawson G, Rogers P. 1987. Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos. Biol Reprod 37:395–401.

    Article  PubMed  CAS  Google Scholar 

  • Lechniak D, Switonski M, Sosnowski M. 1996. The incidence of bovine diploid oocytes matured in vitro. Theriogenology 46:267–277.

    Article  PubMed  CAS  Google Scholar 

  • Long SE, Williams CV. 1982. A comparison of the chromosome complement of inner cell mass and trophoblast cells in day-10 pig embryos. J Reprod Fertil 66:645–648.

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Kalousek DK, Yuen BH, Moon YS. 1995. The chromosome pattern of embryos derived from tripronuclear zygotes studied by cytogenetic analysis and fluorescence in situ hybridization. Fertil Steril 63:1246–1250.

    PubMed  CAS  Google Scholar 

  • Munné S, Márquez C, Magli C, Morton P, Morrison L. 1998. Scoring criteria for preimplantation genetic diagnosis of numerical abnormalities for chromosomes X, Y, 13, 16, 18 and 21. Mol Hum Reprod 9:4:863–870.

    Article  Google Scholar 

  • Murray JD, Moran C, Boland MP, Nancarrow, Sutton R, Hoskinson RM, Scaramuzzi RJ. 1986. Polyploid cells in blastocysts and early fetuses from Australian Merino sheep. J Reprod Fertil 78:439–446.

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90:8424–8428.

    Article  PubMed  CAS  Google Scholar 

  • Nechiporenko VKH, Oprishko NN. 1977. Studies of chromosome in pig embryos at early stages of embryogenesis. Tsitolog. Genet 11:457–460 (in Russian).

    Google Scholar 

  • Pellestor F, Girardet A, Andrèo B, Arnal F, Humeau C.1994. Relationship between morphology and chromosomal constitution in human preimplantation embryo. Mol Reprod Dev 39:141–146.

    Article  PubMed  CAS  Google Scholar 

  • Pickering SJ, Johnson MH, Braude PR, Houliston E. 1988. Cytoskeletal organisation in fresh, aged and spontaneously activated human oocytes. Hum Reprod 3:978–989.

    PubMed  CAS  Google Scholar 

  • Popescu P. 1990. Chromosomes of the cow and bull. Advances in Veterinary Science and Comparative Medicine. San Diego, CA: Academic Press 34:41–71.

    Google Scholar 

  • Rubes J, Zák M, Horinová Z, Machatková M. 1988. Cytogenetic examination of Bovine embryos of different quality. 8th European colloquium on cytogenetics of domestic animals 134–138.

    Google Scholar 

  • Slimane W, Heyman Y, Lavergne Y, Humbolt P, Renard JP. 2000. Assessing chromosomal abnormalities in two-cell bovine in vitro-fertilized embryos by using fluorescent in situ hybridization with three different cloned probes. Biol Reprod 62:628–635.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen PD, Schwerin M, Poulsen PH, Avery B. 1991. Sex determination of bovine embryo biopsies using in situ hybridization. Reprod Dom Anim 26:66–69.

    Article  CAS  Google Scholar 

  • Van der Hoeven FA, Cuijpers MP, de Boer P. 1985. Karyotypes of 3-or 4-day-old pig embryos after short in vitro culture. J Reprod Fertil 75:593–597.

    Article  PubMed  Google Scholar 

  • Viuff D, Rickords L, Offenberg H, Hyttel P, Avery B, Greve T, Olsaker I, Williams JL, Callesen H, Thomsen PD. 1999. A high proportion of bovine blastocysts produced in vitro are mixoploid. Biol Reprod 60:1273–1278.

    Article  PubMed  CAS  Google Scholar 

  • Viuff D, Greve T, Avery B, Hyttel P, Brockhoff PB, Thomsen PD. 2000. Chromosome aberrations in in vitro-produced bovine embryos at days 2–5 post-insemination. Biol Reprod 63:1143–1148.

    Article  PubMed  CAS  Google Scholar 

  • Viuff D, Hendriksen PJM, Vos PLAM, Dieleman SJ, Bibby BM, Greve T, Hyttel P, Thomsen PD. 2001. Chromosomal abnormalities and developmental kinetics in cattle embryos at days 2 to 5 after ovulation. Biol Reprod, 65:204–208.

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Huang T, Liu T, Shi Z, Rosenwaks Z. 1998. Improving the fixation method for preimplantation genetic diagnosis by fluorescent in situ hybridization. J Assisted Reprod Gen 15:9:570–574.

    Article  CAS  Google Scholar 

  • Yoshizawa M, Konno H, Zhu S, Kageyama S, Fukui E, Muramatsu S, Kim S, Araki Y. 1999. Chromosomal diagnosis in each individual blastomere of 5-to 10-cell bovine embryos derived from in vitro fertilization. Theriogenology 51:1239–1250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Viuff, D., Greve, T., Thomsen, P.D. (2002). Is the Frequency of Chromosome Abnormalities Influenced by in Vitro Techniques?. In: Van Soom, A., Boerjan, M. (eds) Assessment of Mammalian Embryo Quality. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0343-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0343-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3909-3

  • Online ISBN: 978-94-010-0343-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics