Skip to main content

Layer-by-Layer Method for Immobilization of Protein Molecules on Biochip Surface

  • Chapter
Frontiers of Multifunctional Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 57))

Abstract

The article presents a Layer-by-Layer method to produce new biochip surfaces on gold or mica for protein binding. The chip surfaces were modified by two polyelectrolytes, poly(sodium 4-styrenesulfonate) and pory(diallyldimethylam- monium chloride), which produce negatively and positively charged surfaces, respectively. Then, the modified surfaces were used for the binding of several proteins, such as bovine serum albumine, apo-transferrine, tissue transglutaminase and SAG (sensitive to apoptosis gene) protein. The proteins were self-assembled from aqueous solution on the modified surfaces and adsorption process has been examined by Surface Plasmon Resonance and Atomic Force Microscopy. Our results suggested that negatively charged surface was preferable for the binding of four proteins, even though two surfaces could be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rabe, J. P. (1992), Molecules at interfaces: STM in materials and life sciences, Ultamicroscopy 41, 42–44.

    Google Scholar 

  2. Hansina, H.G. and Hoh, J.H. (1994) Biomolecular imaging with the atomic force microscope, Annu. Rev. Biophys. Biomol Struct, 23,115–139.

    Article  Google Scholar 

  3. Bustamante C. and Keller, D. (1992), Scanning force microscopy in biology, Physics Today, 32–38.

    Google Scholar 

  4. Chen X., Davies M.C., Roberts C.J., Tendier S.J.B., Williams P.M., Davies J., Dawkes A.C., and Edwards J.C., (1997) Recognition of Protein Adsorption onto Polymer Surfaces by Scanning Force Microscopy and Probe-Surface Adhesion Measurements with Protein-Coated Probes, Langmuir 13, 4106–4111.

    Article  Google Scholar 

  5. Tanigawa, M. and Okada, T. (1998), Atomic force microscopy of supcrcoiled DNA structure on mica, Analytica Chimica Acta 365, 19–25.

    Article  Google Scholar 

  6. Williams, D.F.(1992), Medical and Dental Materials; In Materials Science and Technology 14, (Cahn, R.W., Haascn, P., Kramer, E.J., Eds.); pp.l–27 VCH: Wcinhcim, Germany.

    Google Scholar 

  7. Davis, S.S., Hunneyball, I.M., Ilium, L., Radeliffc, J. H., Smith, A., and Wilson, CG. (1985), Recent advances in the use of microsphercs for targeted therapy. Drugs Exp. Clin. Res. 11, 633–640.

    Google Scholar 

  8. Vukusic, P.S., Bryan-Brown, G.P., and Sambles, J.R. (1992), Surface-plasmon resonance on gratings as a novel means for gas sensing, Sens. Actuators B 8, 155–160.

    Article  Google Scholar 

  9. Caruso, F., Rodda, E., and Furlong, D.N. (1996), Orientational aspects of antibody immobilization and immunological activity on quartz crystal microbalance electrodes, J. Colloid Interface Sci. 178,104–115.

    Article  Google Scholar 

  10. Mayo, C.S. and Hallock, R.B., (1989) Immunoassay based on surface plasmon oscillations, J. Immunol. Methods 120, 105–114.

    Article  Google Scholar 

  11. Barraud A., Perrot, H., Billard, V., Martelet, C, and Therasse, J. (1993), Study of immunoglobulin G thin layers obtained by the Langmuir-Blodgett method: application to immunosensors, Biosens. Biolectron. 8, 39–48.

    Article  Google Scholar 

  12. Tronin, A., Dubrovsky, T., De Nitti, C, Gussoni, A., Erokhin, V., and Nicolini, C. (1994) Langmuir-Blodgctt-films of immunoglobulines IgG-ellipsometric study of the deposition process and of immunological activity, Thin Solid Films 238, 127–132.

    Article  ADS  Google Scholar 

  13. Calvert T.L. and Leckband D.(1997), Two-Dimensional Protein Crystallization at Solid-Liquid Interfaces, Langmuir 13, 6737–6745.

    Article  Google Scholar 

  14. Yeung, C. and Leckband D. (1997), Molecular Level Characterization of M icroenvironmental Influences on the Properties of Immobilized Proteins, Langmuir 13, 6746–6754.

    Article  Google Scholar 

  15. Lin, J.N., Herron, J., Andrade, J.D., and Brizgys, M. (1988), Characterization of immobilized antibodies on silica surfaces, IEEE Trans Biomed Eng. 35, 466–471.

    Article  Google Scholar 

  16. Leggett, G.J., Roberts, C.J., Williams, P.M., Davies, M.C., Jackson, D.E., and Tendier, S..I.B. (1993), Approaches to the immobilization of proteins at surfaces for analysis by scanning-tunneling-microscopy, Langmuir 9, 2356–2362.

    Article  Google Scholar 

  17. Millot M.C., Martin F., Bousauet D., Sebille B., and Levu Y. (1995), A reactive macromolecular matrix for protein immobilization on a gold surface. Application in surface plasmon resonance. Sensors and Actuators B29, 268–273.

    Google Scholar 

  18. Mirsky V.M., Riepl M., and Wolfbcis O.S. (1997), Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes, Biosensors and Bioelectronics 12, 977–989.

    Article  Google Scholar 

  19. Green, R.J., Davies, M.C., Roberts, C.J., and Tendier, S.J.B. (1999), Competitive protein adsorption as observed by surface plasmon resonance, Biomaterials 20, 385–391.

    Article  Google Scholar 

  20. Caruso, F., Furlong, D.N., and Kingshott, P. (1997), Characterization of ferritin adsorption onto gold, Journal of Colloid and Interface Science 186, 129–140.

    Article  Google Scholar 

  21. Blomberg, E., Claesson, P., Froberg, J., and Tilton, R. (1994), Interaction between adsorbed layers of lysozyme studied with the surface force technique, Langmuir 10, 2325–2334.

    Article  Google Scholar 

  22. Decher, G.,, and Hong, J.D. (1991), Buildup of ultrathin multilayer films by a self-assembly process. 2. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelcctrolytes on charged surfaces, Ber. Bunsen-Ges. Phys. Chem. 95, 1430–1434.

    Article  Google Scholar 

  23. Decher, G., Hong, J.D., and Schmitt, J. (1992), Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces, Thin Solid Films 210/211, 831–835.

    Article  Google Scholar 

  24. Lvov, Y., Dechcr, G., and Mohwald, H. (1993), Assembly, structural charaterization, and thermal-behavior of layer-by-laycr deposited ultrathin films of poly(vinyl sulfate) and poly(allylaminc), Langmuir 9, 481–486.

    Article  Google Scholar 

  25. Decher, G., Lvov, Y., and Schmitt, J. (1994), Proof of mutilayer structural organization in self-assembled polycation polyanion molecular films, Thin Solid Films 244, 772–777.

    Article  ADS  Google Scholar 

  26. Sukhorukov, G. B., Schmitt, J., and Decher, G. (1996), Reversible swelling of polyanion/polycation multilayer films in solutions of different ionic strength, Ber. Bunsen-Ges. Phys. Chem. 100, 948–953.

    Article  Google Scholar 

  27. Blomberg, E., Claesson, P., Froberg, J., and Tilton, R. (1994), Interaction between adsorbed layers of lysozyme studied with the surface force technique, Langmuir 10, 2325–2334.

    Article  Google Scholar 

  28. Lvov, Y.; Ariga, K.; lehinose, I.; and Kunitake, T. (1995), Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption, J. Am. Chem. Soc. 117, 6117–6123.

    Article  Google Scholar 

  29. Onda, M., Lvov, Y., Ariga, K., and Kunitake, T. (1996), Sequential actions of glucose oxidase and pcroxidase in molecular films assembled by layer-by-laycr alternate adsorption, Biotech. Bioeng. 51, 163–167.

    Article  Google Scholar 

  30. Lvov, Yu., Ariga, K., lehinose, 1., and Kunitake, T. (1996), Molecular film assembly via laycr-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycigen, Thin Solid Films 284/285, 797–801.

    Article  Google Scholar 

  31. Caruso, F., Niikura, K., Furlong, D.N., and Okahata Y. (1997), Assembly of Alternating Polyelectrolyte and Protein Multilayer Films for Immunosensing, Langmuir 13, 3427–3433.

    Article  Google Scholar 

  32. Houska, M. and Brynda, E. (1997), Interactions of Proteins with Polyelectrolytes at Solid/ Liquid lnterfaces:Sequential Adsorption of Albumin and Heparin, Journal of Colloid and Interface Science 188, 243–250.

    Article  Google Scholar 

  33. Brynda, E. and Houska, M. (1998), Preparation of organized protein multilayers, Macromol. Rapid Commun. 19, 173–176.

    Article  Google Scholar 

  34. Caruso, F., Furlong, D.N., Ariga, K., lehinose, I., and Kunitake, T. (1998), Characterization of Polyelectrolyte-Protein Multilayer Films by Atomic Force Microscopy, Scanning Electron Microscopy, and Fourier Transform Infrared Reflection-Absorption Spectroscopy, Langmuir 14, 4559–4565.

    Article  Google Scholar 

  35. Sadana, A., and Bcclaram, A.M. (1995), Antigen-antibody diffusion-limited binding kinetics of biosensors: a fractal analysis. Biosensors and Bioelectronics 10, 301–316.

    Article  Google Scholar 

  36. Hinterdorfer, P., Baumgattner, W., Gruber, HJ., Schilcher, K., and Schindler, H. (1996), Detection and localization of individual antibody-antigen recognition events by atomic force microscopy, Proc. Natl. Acad. Sci. U.S.A. 93, 3477–3481.

    Article  ADS  Google Scholar 

  37. Lee, G.U., Kidwell D.A., and Colton, RJ. (1994), Sensing discrete streptavidin biotin interactions with atomic-force microscopy, Langmuir 10, 354–357.

    Article  Google Scholar 

  38. Pierce, M., Stuart, J., Pungor, A., Dryden P., and Hlady V. (1994), Adhesion force measurements using an atomic-force microscope upgraded with a linear position-sensitive detector, Langmuir 10, 3217–3221.

    Article  Google Scholar 

  39. Florin, E.-L., Moy, V.T., and Gaub, H.E. (1994), Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417.

    Article  ADS  Google Scholar 

  40. Moy, V.T., Florin, E.-L., and Gaub, H.E. (1994), Intermolecular forces and energies between ligands and receptors, Science 266, 257–259.

    Article  ADS  Google Scholar 

  41. Patel, N., Davies, M.C., Hartshome, M., Heaton, R.J., Roberts, C.J., Tendier. S.J.B., and Williams P.M.(1997), Immobilization of Protein Molecules onto Homogeneous and Mixed Carboxylate-Terminated Self-Assembled Monolayers, Langmuir 13, 6485–6490.

    Article  Google Scholar 

  42. Patel, N., Davies, M.C., Hcaton, R.J., Roberts, C.J., Tendier, S.J.B., and Williams, P.M. (1998), A scanning probe microscopy study of the physisorption and chemisorption of protein molecules onto carboxylate terminated self-assembled monolayers, Appi. Phys. A 66, S569–S574.

    Article  ADS  Google Scholar 

  43. Cherbuliez, E. and Plattner, P. (1929), Determination of the amino acids resulting from thehydrolysis of proteins. ll.Acetyl esters of some amino acids, Helv. Chim. Acta 12, 317–329.

    Article  Google Scholar 

  44. Butt, H.J., Downing, K.H., and Hansma, P.K. (1990), Imaging the membrane protein bacteriorodopsin with the atomic force microscope, Biophys. J. 58, 1473–1480.

    Article  Google Scholar 

  45. Buijs, J., Lichtenbelt, J.W.Th., Norde, W., and Lyklema, J. (1995), Adsorption of monoclonal IgGs and their F(ab’)(2) fragments onto polymeric surfaces. Colloids Surf., B: Biointer. 5, 11–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhavnerko, G.K., Yi, SJ., Kweon, SM., Ha, KS. (2002). Layer-by-Layer Method for Immobilization of Protein Molecules on Biochip Surface. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics