Skip to main content

Modeling and Interpretation of STM Images of Carbon Nanosystems

  • Chapter
Frontiers of Multifunctional Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 57))

Abstract

Scanning tunneling microscopy (STM) is the only tool making it possible to study both the topography and electronic structure of carbon nanosystems in sub-nanometer resolution. The interpretation of the STM images of carbon nanosystems is more complicated than in the case of at, single crystalline surfaces. Because of this computer simulation is a helpful tool in understanding the experimental data. In this paper the image formation in STM and the particularities of imaging supported carbon nanosystems are discussed. The tight binding and the wave packet dynamical STM simulation methods are reviewed with applications showing their complementary merits. These methods are simple enough to make feasible in the near future their application to more complex carbon nanosystems like coiled nanotubes and nanotube crossings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kioto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E. (1985) C60: Buckminsterrullerene, Nature 318, 162–163.

    Article  ADS  Google Scholar 

  2. Scharff P. Fundamental Properties and Applications of Fulkrene and Carbon Nanotube Systems, This Volume.

    Google Scholar 

  3. Dresselnaus, M. S., Dresselhaus, G., Bcklund P. C. (1996) Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.

    Google Scholar 

  4. Iijima, S. (1991) Helical inicrotubules of graphitic carbon, Nature 354, 56–58.

    Article  ADS  Google Scholar 

  5. Smith, B.W., Monthioux, M., and Luzzi, D.E. (1998) Encapsulated C60 in carbon nanotubes, Nature 396, 323–324.

    Article  ADS  Google Scholar 

  6. Ouyang, M., Huang, J.-L., Cheung, Ch.L., Lieber, Ch.M. (2001) Atomically resolved single-walled carbon nanotube intramolecular junctions, Science 291, 97–100.

    Article  ADS  Google Scholar 

  7. Xagy, P., Ehlich, R., Birö, L.P., Gyulai, J. (2000) Y-branching of single wall carbon nanotubes, Appl. Phys. A 70, 481–483.

    Article  ADS  Google Scholar 

  8. Binnig, G. and Rohrer, H. (1982) Scanning tunneling microscopy Helv. Phys. Acta 55. 720–735.

    Google Scholar 

  9. Wiesendanger, R. (1994) Scanning probe microscopy and spectroscopy, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  10. Lucas. A.A., Morawitz, H., Henry, G.R., Vigneron, J.P., Lambin, Ph., Cutler, P.H., and Feuchtwang, T.W. (1988) Scattering theoretic approach to elastic one-electron tunneling through localized barriers: Applications to scanning tunneling microscopy, Phys. Rev. B 37, 10708–10720.

    Article  ADS  Google Scholar 

  11. Ge, M. and Sattler, K. (1994) STM of single-shell nanotubes of carbon, Appl. Phys. Lett. 65, 2284–2286.

    Article  ADS  Google Scholar 

  12. Venerna, L.C., Meunier, V., Lambin, Ph., and Dekker, C. (2000) Atomic structure of carbon nanotubes from scanning tunneling microscopy. Phys. Rev. B 61, 2991–2996.

    Article  ADS  Google Scholar 

  13. Kim, Ph., Odom, T.W., Huang, J., and Lieber, CM. (2000) STM study of single-walled carbon nanotubes, Carbon 38, 1741–1744.

    Article  Google Scholar 

  14. Mark, G.I., Biró, L.P., and Gyulai, J. (1998) Simulation of STM images of three-dimensional surfaces and comparison with experimental data: carbon nanotubes, Phys. Rev. B 58, 12645–12648.

    Article  ADS  Google Scholar 

  15. Clauss. W., Bergeron, D.J., Freitag, M., Kane, C.L., Mele, E.J., and Johnson, A.T. (1999) Electron backscattering on single-wall carbon nanotubes observed by STM. Europhys. Lett. 47, 601–607.

    Article  ADS  Google Scholar 

  16. Biró, L.P.. Gyulai, J., Lambin, Ph., Nagy, J.B., Lazarescu, S., Márk. G.I., Fonseca, A., Surján, P.R., Szekeres, Zs., Thiry, P.A. Lucas, A.A. (1998) Scanning tunnelling microscopy (STM) imaging of carbon uanotubes, Carbon 36, 689.

    Article  Google Scholar 

  17. Mark, G.I., Biró, L.P., Gyulai, J., Thiry, P.A., Lucas. A.A., and Lambin, Ph. (2000) Simulation of scanning tunneling spectroscopy of supported carbon nanotubes, Phys. Rev. B 62. 2797–2805.

    Article  ADS  Google Scholar 

  18. Mark, G.I., Biró, L.P., Koós, A., Osváth, Z., Gyulai, J., Benito, A.M., Thiry, P.A. and Lambin, Ph. (in press) Charge spreading effects during 3D tunneling through a supported carbon nanotube, in Electronic Properties of Novel Materials-Molecular Nanostructures, March 2001, Kirchberg, Austria, AIP Conference Proceedings, edited by Kuzmany, H., Fink, J., Mehring, M., Roth, S.

    Google Scholar 

  19. Tersoff, J., Hamann, D.R. (1985) Theory of the scanning tunneling microscope, Phys. Rev. B 31, 805–813.

    Article  ADS  Google Scholar 

  20. Rubio, A., Sanchez-Portal, D., Artacho, E., Ordejon, P., and Soler, J.M. (1999) Electronic states in a finite carbon nanotube: A one-dimensional quantum box, Phys. Rev. Lett. 82, 3520–3523; Rubio, A. (1999) Spectroscopic properties and STM images of carbon nanotubes, Appl. Phys. A 68, 275-282.

    Article  ADS  Google Scholar 

  21. Meunier, V. and Lambin, Ph. (1998) Tight-binding computation of the STM image of carbon nanotubes, Phys. Rev. Lett. 81, 5888–5891.

    Article  ADS  Google Scholar 

  22. Agrait, N., Rodrigo, J.G., and Vieira, S. (1992) On the transition from tunneling regime to point contact: graphite, Utramicroscopy 42-44, 177–183.

    Article  Google Scholar 

  23. Charlier, J.C., Michenaud, J.P., and Lambin, Ph. (1992) Tight-binding density of electronic states of pregraphitic carbon, Phys. Rev. B 46, 4540–4543.

    Article  ADS  Google Scholar 

  24. Tománek, D. and Louie, S.G. (1988) First-principles calculations of highly asymmetric structure in scanning-tunnelmg-microscopy images of graphite, Phys. Rev. B 37, 8327–8336.

    Article  ADS  Google Scholar 

  25. Venema, L.C., Wildöer, J.W.G., Dekker, C, Rinzler, A.G., and Smalley, R.E. (1998) STM atomic resolution images of single-wall carbon nanotubes, Appl. Phys. A 66, S153–S155.

    Article  ADS  Google Scholar 

  26. Kane, CL. and Mele, E.J. (1999) Broken symmetry in STM images of carbon nanotubes, Phys. Rev. B 59, R12759-R12762.

    Google Scholar 

  27. Wildöer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., and Dekker, C. (1998) Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59–62.

    Article  ADS  Google Scholar 

  28. Odom, T.W., Huang, J.L., Kim, Ph., and Lieber, Ch.M. (1998) Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62–64.

    Article  ADS  Google Scholar 

  29. Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S., and Achiba, Y. (1998) Atomic structure and electronic properties of single-wall nanotubes probed by STM at room temperature, Appl. Phys. Lett. 73, 3839–3841.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Márk, G.I., Lambin, P., Biró, L.P. (2002). Modeling and Interpretation of STM Images of Carbon Nanosystems. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics