Skip to main content

Nanotechnology of DNA/nano-Si and DNA/Carbon Nanotubes/nano-Si Chips

  • Chapter
Frontiers of Multifunctional Nanosystems

Abstract

DNA nanotechnology using DNA molecular assembly for the formation of the nanosystems from DNA and nanotubes in chip on the silicon surface, has been developed on the base of theoretical predictions of chemical activity changing of SWCNT’s, nano-Si’s under their localization into the biopolymer surrounding. We report the direct investigation by AFM of DNA assembled on the surface porous Si with nano - Si system, UV-vis and IR spectroscopic study of partially unwrapped double helix DNA molecules with carbon nanotubes, which spontaneously self- assembled into blocks consisting of DNA molecule and carbon nanotube. The shift of absorption peak on 5,8 nm and the raised absorption in the presence of carbon nanotubes are testified about the change of hydrogen bonds between the bases of DNA molecules in the layer with carbon nanotubes. Both the decrease of the wavenumber of N-H…N, N-H…O groups on 12 cm -1 and the absence of C-CH3 group vibrational mode at 1440 cm -1 in IR transmittance spectra from DNA/nanotubes layer are indicative of their self- assembly formation.

The electronic and photoelectronic properties of the formed nanosystems under the change of DNA/SWCNT molecular and DNA/nanocrystalline-Si (nano-Si) networks by DNA modification in the chips have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alivisatos, A. P., Barbara, P. F., Castleman, A. W., et all. (1998) From Molecules to Materials: Current Trends and Future Directions. Adv. Maler, 10, No. 16. 1297–1336

    Article  Google Scholar 

  2. Nanotechnology Research Directions: IWGN Workshop Report. Vision for Nanotechnology R&D in the Next Decade. Edited by Roco M.C., Williams R.S., Aiivisatos P., (2000), Kluwer Academic Publishers, Dordrecht/Boston/London, 316.

    Google Scholar 

  3. Alivisatos, A.P., K.P. Johnsson, X.G. Peng, T.E. Wilson, C.J. Loweth, M.P. Bmchez, P.G. Schultz. (1996) Organization ofnanocrystal molecules using DNA. Nature 382:609–611.

    Article  ADS  Google Scholar 

  4. Nadrian C. Seeman, Chengde Mao, Furong Liu, et al., (2000). Nicks, Nodes, and New Motifs for DNA Nanotechnology. Mathematics, Physics and Chemistry, 6, 177–208.

    Google Scholar 

  5. Schonenberger C, Forro L. (2001), Physics of multiwalled carbon nanotubes In Book: Physics, Chemistry and Application of Nanostructures, Editors: V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, World Scientific, Singapore, 86–93.

    Google Scholar 

  6. Dekker Cees, (May 1999) Carbon Nanotubes as Molecular Quantum Wires, Physics Today,. 22–28

    Google Scholar 

  7. Porath D., Bezryadin A., Simon de Vries & Dekker Cees, (2000) Direct Measurement of electrical transport through DNA molecules, Nature Vol.403, 10 February, 635–638.

    Article  ADS  Google Scholar 

  8. Reed. M.A., C. Zhou, CJ MulIer, T.P. Burgin, and J.M. Tour. (1997). Conductance of a molecular junction. Science 278: 252–254

    Article  Google Scholar 

  9. Yan Mao, Lambert N. Daniel, (1994). DNA Binding to Crystalline Silica Characterized by Fourier-Transform Infared Spectroscopy. Environ Health Perspect. Noel Whittaker and Umberto Saffiotti, Environ Health Perspect, 102(Suppl), 165–171

    Google Scholar 

  10. By Zijian Guo, Salder Peter J., Tsang Chi Shik (1998) Immobilization and Visualization of DNA and Protein on Carbon Nanotubes. Adv. Mater. 10, No.9

    Google Scholar 

  11. Buzaneva E.V., Karlash A.Yu., Putselyk S.O., Shtogun Ya.V., Gorchynskyy K.A., Prylutskyy Yu.l., Prylutska S.V., Matyshevska O.P., Scharff P., (2000) The Electronic Properties for DNA/CNT Chip on Si in Electronic Properties of Novel Materials-Molecular Nanostructures, Editors: Hans Kuzmany, Jorg Fink, Michael Mehring, Siegmar Roth, AIP Conference Proceedings 544, Melville, New York: American Institute of Physics, 468–472.

    Chapter  Google Scholar 

  12. A. Karlash, S. Putselyk, Ya. Shtogun, K. Yakovkin, K. Gorchinsky, A. Benilov, S. Prylutska, O. Matyshevska, Yu. Prylutskyy, E. Buzaneva. Self-Organization of the DNA/(C60) and DNA/Carbon Nanotube Blocks. In Workbook Frontiers of Nano-Optoelectronic Systems: Molecular-Scale Engineering and Processes”. NATO/EC, ARW/Spring School, Ukraine, Kyiv 22-26 May 2000, Nano T-7.

    Google Scholar 

  13. O. Matyshevska, A. Karlash, Ya. Shtogun, N. Procopchuk, A. Benilov, Yu. Kirgissov, A. Gorchinsky, T. Veblaya, N. Kharchenko, E. Buzaneva, Yu. Prilutskiy, O. Marchenko Self-Organizing DNA/Fullerene molecular films. In Book of abstracts, International Conference on Electronic Materials & European Materials Research Society Spring Meeting, Strasbourg, France, May 30-June 2, 2000, Symposium E: Current Trends in Nanotechnologies, E-31 (E-V/P07).

    Google Scholar 

  14. Ya Shtogun, A. Karlash, S. Putselyk (2000) Patterned Films of DNA/Carbon Nanotubes. In Book of abstracts, International Conference on DNA Conformation, Modification and Recognition in Biomedicine, 2-5 July, Brno, Czech Republic,126.

    Google Scholar 

  15. A. Karlash, Ya. Shtogun, S. Prylutska, O. Matyshevska, E. Buzaneva (2000) Biology active DNA/Fullerenes/ Carbon Nanotubes Assemblies.in Book of Abstracts, International Conference on DNA Modification and Recognition in Biomedicine, 2-5 July, Brno, Czech Republic, 98.

    Google Scholar 

  16. K. Yakovkin, O. Nichiporuk, Ya. Shtogun, S. Prylutska, V. Scryshevskiy, S. Litvinenko, E. Buzaneva (2000) Photoactivity of DNA/Carbon Nanotubes layers in Pt/Ir-Silicon cell. In Book of abstracts, International Conference on DNA Conformation, Modification and Recognition in Biomedicine. 2-5 July, Brno, Czech Republic, 138.

    Google Scholar 

  17. Shtogun Ya, Prylutska S., (2000) Infrared Identification of the Self-formation Route of a DNA/Protein/ Carbon nanotubes Molecular Layer. In Book of abstracts, International Young Scientists’ Conference “Scientific Problems of Optics in the XXI century”, October 5-6, Kiev, Ukraine, 56.

    Google Scholar 

  18. Buzaneva E., Gorchinskiy A., Popova G., Karlash A., Ciapa S., Shtogun Ya., Yakovkin K. (2001) Electrical and Optical Properties of DNA/Nano-Si, DNA/Fullerene/Nano-Si, DNA/ Carbon Nanotubes/ Nano-Si Chips. In Workbook, for Kiev NATO ARW/Autumn School, 9-12 September: Frontiers in Molecular-Scale Science and Technology of Fullerene, Nanotube, Nanosilicon and Biopolymer (DNA, Protein) Multifunctional Nanosystems. Kiev University, SB-L6

    Google Scholar 

  19. Karlash A., Shtogun Ya., Veblay T. Gorchinsky A., Matyshevska O, Buzaneva E. (2000) Spectroscopy of IR-Transmittanceof DNA Molecular layers. Visnyk of Kyiv University, Series: Phys.-Kiath. Science,No 1, 366–379

    Google Scholar 

  20. Karlash A., Shtogun Ya. Veblay T., Gorchinsky A., Matyshevska O., Buzaneva E, Lositsky M., Prylutska S., Yashchuk V.,(2000) Self-Organized DNA Mole-cules/Carbon Nanotubes layer: UV, IR-Spectorscopy“. Visnyk of Kyiv University, Series: Phys.-Math. Science, No 2, 412–421

    Google Scholar 

  21. Buzaneva E., Karlash A., Putselyk S., Shtogun Ya., Gorchinskyy K., Prylutskyy Yu., Ogloblya O., Matyshevska O., Prylutska S., Eklund P., Scharff. P. (2000) Electronic properties of DNA/CNT chip on Si. // Mol.Cryst.Liq.Cryst.

    Google Scholar 

  22. Anna Angelescu, Irina Kieps, Nina Kovtyukhova, Sergeiy Putselyk, Volodymyr Kudryavtsev, Alexsander Gorchinskiy, Galina Popova, Eugenia Buzaneva. (2001) Integration of Si biocomplex building blocks into porous Si for self-organization of multifunctional structures. Materials Science and Engineering C, 716.

    Google Scholar 

  23. Buzaneva E., Gorchinskiy A., Popova G., Veblaya T, Zankovych, Boiko Yu., Zolotarenko P., Pogorelov V., Bukalo V., Benilov A., Lazaruk S., Beyliss S., Starovoitov A., Senkevich A. (2000) Photophysical properties of nano Si/SiOx composites in Al/composite/mono Si structures for green light emitting and photodetector-Schottky diodes. Materisis Science in Semiconductor Processing 3 529–537

    Article  Google Scholar 

  24. Bisi O., Stefano Osicini, Pavesi L. (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surface Science Reports, 38, 1–126

    Article  ADS  Google Scholar 

  25. Prylutskyy Yu., Durov S, Ogloblya O, Buzaneva E., Scharff P., (2000) Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes. Comput.Mat.Sci., V. 17, N 2-4, 352–355

    Article  Google Scholar 

  26. Prylutskyy Yu. Ogloblya O., Buzaneva E, Gorchinskiy A.,. Eklund P., Scharff P.. (2000) Optical properties of single-walled carbon nanotubes. Func.Mat., Vol. 7, No 4(1).652–654

    Google Scholar 

  27. Prylutskyy Yu. Ogloblya O., Buzaneva E., Eklund P., Scharff P., Putselyk S. (2000) Effect of pressure on the electronic properties of carbon nanotubes. In Book: AIP Conf. Proc. 544, Electronic Properties of Novel Materials-Molecular Nanostructures XIV International Winterschool/ Euroconference, Kirchberg, Tirol, Austria, 4-11 March, Editors: Hans Kuzmany, Jorg Fink, Michael Mehring, Siegmar Roth. Melville, New York 371–375.

    Google Scholar 

  28. Kovtyukhova N., Buzaneva E., Gorchinskiy A, Olliver P.J., Martin B., Waraksa C, Mallouk T.E., (2000) Self-Assembly of Nanoblocks and molecules in Optical Thin-Film Nanostructures. Frontiers of Nano-Optoelectronics Systems: Molecular-Scale Engineering and Processes, Eds.,: Lorenza Pavesi and Eugenia Buzaneva, NA TO ASI Series, Series E: Applied Science-Vol 447 Kluwer A cademic Publish, Dordrech/Boston/London. 160–174.

    Google Scholar 

  29. Simon P Newton, J. Fraser Stoddart and Wayne Hayes (1997), Self-assembled macromolecular and macrosupramolecular systems, Supramolecular Science 3,221–236.

    Google Scholar 

  30. Brune, H, Giovannini, M., Bromann, K. and Kern, K. (1998) Self-Organized Growth of Nanostructure Arrays on Strain-Relief Patterns, Nature 394,451–453

    Article  ADS  Google Scholar 

  31. Goodby J.W., (1999) Mesogenic molecular irystalline materials. Current Opinion. Solid State and Materials Science, Vol. 4, 361–368.

    Article  ADS  Google Scholar 

  32. Stupp, S.I., Le Bonheur V., Walker K., L.S. Li, K.E Huggins, M. Keser, and A. Amstutz. (1997). Supramolecular materials: self-organized nanostructures. Science 276: 384–389.

    Article  Google Scholar 

  33. Kevin E. Healy. (1999) Molecular engineering of materials for bioreactivity. Current Opinion. Solid State and Materials Science, Vol. 4, 381–387.

    Article  ADS  Google Scholar 

  34. Brynda, E. and Houska, M. (1998), Preparation of organized protein multilayers. Macromol. Rapid Commun. 19, 173–176.

    Article  Google Scholar 

  35. Lin, X.M., Sorensen C.M.I,. Klabunde K.J,. (1999). Alkaline-earth oxide nanoparticles obtained by aerogel methods. Characterizations and ration for unexpectedly high surface chemical reactivites. Chem. of Materials 11 197–202.

    Google Scholar 

  36. Buddy D. Ratner, Huaiqiu Shi. (1999) Recognition templates for biomaterials with engineered bioreactivity. Current Opinion. Solid State and Materials Science, Vol. 4, 395–402.

    Article  ADS  Google Scholar 

  37. Ratner D. (1997), The engineering of biomaterials exhibiting recognition and specificity. J. Mol. Rec. 9, 617–625.

    Article  Google Scholar 

  38. Shi, H, Ratner, BD (1999), Template recognition of protein imprited polymer surfaces. J. Biomed.Maler. Res. 50, 1–11.

    Google Scholar 

  39. Shi, H, Ratner, BD (1999), Recognition templates for biomaterials with engineered bioreactivity, Current Options in Solid State & Materials. Science 4, 395–402.

    Google Scholar 

  40. Shi K, Tsai W-B, Ferrari S, Ratner BD (1999), Template imprinted nanostructural surfaces for protein recognition. Nature 398, 593–597.

    Article  ADS  Google Scholar 

  41. Feingold Mario. (2000) Single-molecule studies of DNA and DNA-protein interactions. Physica E: Low-dimensional Systems and Nanostructures,Vol. 9, March, 616–620.

    Article  ADS  Google Scholar 

  42. Braun, E., Y. Eichen, U Sivan, G.Ben Yoseph. (1998). DNA-templed assembly and electrode attachment of a conducting silver wire. Nature 391: 775–778.

    Article  ADS  Google Scholar 

  43. Mucic, R. C, J.J. Storhoff, C.A. Mirkin, and R.L. Letsinger. (1998). DNA-directed synthesis of binary nanoparticle network materials. Journal of the American Chemistry Society 120:12674–12675.

    Article  Google Scholar 

  44. Mirkin, CA., R L. Lestinger, R.C. Mucic, and J.J. Storhoff. (1996). A DNA-based method for ratinaly assembling nanoparticles into macroscopic materials. Nature 382: 607–609.

    Article  ADS  Google Scholar 

  45. Tanigawa, M. and Okada, T. (1998), Atomic force microscopy of supercoiled DNA structure on mica, Analytica Chimica Acta 365,19–25.

    Article  Google Scholar 

  46. Fink H.-W. (2000) Electrical Conduction through DNA Molecules, in Book Electronic Properties of Novel Materials-Molecular Nanostructures, Editors: Hans Kuzmany, Jorg Fink, Michael Mehring, Siegmar Roth, AIP Conference Proceedings 544, Melville, New York: American Institute of Physics, 457–461.

    Google Scholar 

  47. Chen. J., M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, PC Eklund, and R.C. Haddon. (1998). Solution properties of single-walled carbon nanotubes. Science 282: 95–98.

    Article  ADS  Google Scholar 

  48. Kikuo Hargaya, (2000) “Disorder Effects on Density of States and Electronic Conductance in Carbon Nanotubes.” in Electronic Properties of Novel Materials-Molecular Nanostructures, Editors: Hans Kuzmany, Jorg Fink, Michael Mehring, Siegmar Roth, AIP Conference Proceedings 486, Melville, New York: American Institute of Physics, 346–350.

    Google Scholar 

  49. Wong et all. (1998). Covalently functionalized nanctubes as nanometre-sized probes in chemistry and biology. Nature. 394: 52

    Article  ADS  Google Scholar 

  50. Muris M., Dupont-Pavlovsky N., Bienfait M., Zeppenfeld P. (2001), Where the molecules absorbed on single-walled nanotubes?, Surface Science, Vol. 492, Nos. 1-2,67–74.

    Article  ADS  Google Scholar 

  51. Xiangang Wan and Jinming Dong (1998), Optical properties of carbon nanotubes, Physical Review B, Vol. 58, Nov. 11,6756–6759.

    Article  ADS  Google Scholar 

  52. Alvarez L., Guillard T., Sauvajol J.L., Flamant G., Laplaze D.(2001) Growth mechanisms and diameter evolution of single wall carbon nanotubes. Chemical Physics Letters 342, 7–14.

    Article  ADS  Google Scholar 

  53. J. Hygard, D.H. Codben, M. Bockrath, PL. McEuen, P.E. Lindelof, (1999) Electrical Transport Measurements on single-walled carbon nanotubes, Appl.Phys. A 69, 297–304

    Article  ADS  Google Scholar 

  54. Wong S, Joselevich E, Woolley A, Cheung CL, Lieber C. (1998) Covalentnly functionalized nanotubes and nanomitre-sized probes in chemistry and biology. Nature; 394: 52–5.

    Article  ADS  Google Scholar 

  55. Falvo M, Taylor Rhelser A, Chi V, Braks F, Washbum S, Superfine R. (1999) Nanometer-scale rolling and sliding of carbon nanotubes. Nature, 397: 236–238.

    Article  ADS  Google Scholar 

  56. Walt A. De Heer. (1999) Recent developments in carbon nanotubes. Current Opinion. Solid State and Materials Science, Vol. 4, 355–359.

    Article  ADS  Google Scholar 

  57. Canham L.T. (1997) Biomedical applications of porous silicon. Properies of Porous silicon. Edited by Leigh Canhamemis Datareviews Series No 18. An INSPEC publication.London, United Kingdom.371–376.

    Google Scholar 

  58. Bayliss S. C, Buckberry L. D. and Mayne A. (2000), Interaction of biomaterials with porous silicon in Book Frontiers of Nano-Optoelectronic Systems, edited by Pavesi L. and Buzaneva E., NATO Science Series II. Mathematics, Physics and Chemistry-Vol. 6, Kluwer Academic Publishers, Dordrech/Boston/London. 199–208.

    Google Scholar 

  59. Bruchez, M., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. (1998). Semiconductor nanocrystals as fluorescent biological labes. Science 1:197–201

    Google Scholar 

  60. Chan, W.C.W. and S.M. Nie. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018.

    Article  ADS  Google Scholar 

  61. Mirkin, C.A. at all.(1997). Selective colorimetric detection of polynucliotides based on the distance-depended optical properties of gold nanoparticles. Science 277:1078.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buzaneva, E. et al. (2002). Nanotechnology of DNA/nano-Si and DNA/Carbon Nanotubes/nano-Si Chips. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics