Skip to main content

Templates for Metal Nanowire Self-Assembly

  • Chapter
Frontiers of Multifunctional Nanosystems

Part of the book series: NATO Science Series ((NAII,volume 57))

  • 300 Accesses

Abstract

The miniaturization of electronic devices is the mayor economical driving force in nanotechnology, and consequently, traditional lithographic fabrication techniques are currently being pushed towards their size resolution limits. This is generating a need for research into alternative fabrication strategies, which can provide smaller structures. At present, these structures are predominantly of fundamental interest since size dependent phenomena such as Coulomb blockade effects1 and conductance quantisation2are beginning to play an important role and can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P Andres, T. Bein, M. Dorogi, S. Feng, JJ. Henderson, C.B. Kubiak, W. Mahoney, R.G. Osifchin, R.

    Google Scholar 

  2. Reifenberger, Science 272 (1996) 1323.

    Article  ADS  Google Scholar 

  3. S. Ciraci, A. Buldum, l.P. Batra, J. Phys. Condens. Mat. 13 (2001) 537.

    Article  ADS  Google Scholar 

  4. P. Moriarty, Rcp. Prog. Phys. 64 (2001) 297.

    Google Scholar 

  5. M. Li, H. Schnableggcr, S. Mann, Nature 402 (1999) 393.

    Article  ADS  Google Scholar 

  6. M. Brust, M. Walker, D. Bethell, D.J. Schiff’rin, R. Whyman, J. Chem. Soc., Chem. Commun. (1994)801.

    Google Scholar 

  7. M. Brust, J. Fink, D. Bethell, D.J. Schiffrin and C.J. Kiely, J. Chem. Soc., Chem. Commun. (1995) 1655.

    Google Scholar 

  8. M. Brust, D. Bethell, D.J. Schiffrin, C.J. Kiely, Adv. Mater 7 (1995) 795.

    Article  Google Scholar 

  9. A.C. Templeton, W.P. Wuelfmg, R.W. Murray, Ace. Chem. Res. 33 (2000) 27.

    Article  Google Scholar 

  10. D. Bethell, M. Brust, D.J. Schiffrin, C.J. Kiely, J. Electroanal. Chem. 409 (1996) 137.

    Article  Google Scholar 

  11. M. Brust, D. Bethell, C. J. Kiely, D. J. Schiffrin, Langmuir 14 (1998) 5425.

    Article  Google Scholar 

  12. R.L. Whetten, J.T. Khoury, M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke, U. Landman, Adv. Mater. 8 (1996)428.

    Article  Google Scholar 

  13. J. Fink, C.J. Kiely, D. Bethell, D.J. Schiffrin, Chem. Mater. 10 (1998) 922.

    Article  Google Scholar 

  14. W.D. Luedtke, U. Landman, J. Phys. Chem.100 (1996) 13323.

    Article  Google Scholar 

  15. C.J. Kiely, J. Fink, M. Brust, D. Bethell, D.J. Schiffrin, Nature 396 (1998) 444.

    Article  ADS  Google Scholar 

  16. M.D.R. Taylor, P. Moriarty, M. Brust, Chem. Phys. Lett, in press.

    Google Scholar 

  17. X.M. Lin, H.M. Jaeger, CM. Sorensen, K.J. Klabunde, J. Phys. Chem. B 105 (2001) 3353.

    Google Scholar 

  18. P.D. Kaplan, J.L. Rouke, A.G. Yodh, DJ. Pine, Phys. Rev. Lett. 72 (1994) 582.

    Article  ADS  Google Scholar 

  19. M. Brust, CI. Kiely, D. Bethell, DJ. Schiffrin, J. Am. Chem. Soc. 120(1998) 12367.

    Article  Google Scholar 

  20. M. Brust, C.J. Kiely, Colloid. Surface. A in press.

    Google Scholar 

  21. S. Fullam, D. Cottell, H. Rensmo, D. Fitzmaurice, Adv. Mater. 12 (2000) 1430.

    Article  Google Scholar 

  22. J.C. Wittmann, P. Smith, Nature 352 (1991) 414.

    Article  ADS  Google Scholar 

  23. T.O. Hutchinson, Y.-P. Liu, C. Kiely, CJ. Kiely, M. Brust, Adv. Mater, in press.

    Google Scholar 

  24. A.D. Dinsmore, A.G. Yodh, Langmuir 15 (1999) 314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brust, M., Liu, YP., Hutchinson, T.O., Kiely, C.J. (2002). Templates for Metal Nanowire Self-Assembly. In: Buzaneva, E., Scharff, P. (eds) Frontiers of Multifunctional Nanosystems. NATO Science Series, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0341-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0341-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0561-9

  • Online ISBN: 978-94-010-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics