The Fast Satellite Fields Instrument



We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to ∼4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed hurst memory data, are waveform data at 2 × 106 sample s−1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.


Digital Signal Processor Spectral Coverage Auroral Zone Search Coil Burst Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carlson, C. W. et al.: 1998a, in R. R. Pfaff, J. E. Borovsky, and D. T. Young (eds.), ‘Design and Applications of Imaging Plasma Instruments’. Measurement Techniques in Space Plasma, AGU, Geophysical Monograph 102, p. 125.Google Scholar
  2. Carlson, C. W., Pfaff, R. F., and Watzin, J. G.: 1998b, ‘The Fast Auroral Snapshot Mission’, Geophys. Res. Lett. 25, 2013.ADSCrossRefGoogle Scholar
  3. Ergun, R. E., Carlson, C. W., McFadden, J. P., Clemmons, J. H., and Boehm, L. H.: 1991a, ‘Langmuir Wave Growth and Electron Bunching: Results From a Wave-Particle Correlator’, J. Geophxs. Res. 96, 225.ADSCrossRefGoogle Scholar
  4. Ergun, R. E., Carlson, C. W., McFadden, J. P., TonThat, D. M., Clemmons, J. H., and Boehm, M. H.: 1991b, ‘Observation of Electron Bunching During Landau Growth and Damping’, J. Geophys. Res. 96, 11371.ADSCrossRefGoogle Scholar
  5. Ergun, R. E., McFadden, J. P., and Carlson, C. W.: 1998, in R. F. Pfaff, J. E. Borovsky, and D. T. Young (eds.), ‘Wave-Particle correlator Instrument Design’, Measurement Techniques in Space Plasmas AGU Geophysical Monograph 102, p. 325.Google Scholar
  6. Gurnett, D. A.: 1974, ‘The Earth as a Radio Source: Terrestrial Kilometric Radiation’, J. Geophys. Res. 79, 4227.ADSCrossRefGoogle Scholar
  7. Gurnett, D. A., Pfeiffer, G. W., Anderson, R. R. Mosier, S. R., and Cauffman, D. P.: 1969, ‘Initial Observations of VLF Electric and Magnetic Fields with the Injun 5 Satellite’, J. Geophys. Res. 74, 4631.ADSCrossRefGoogle Scholar
  8. Klumpar, D. M.: 1986, in T. Chang (ed.), ‘A Digest and Comprehensive Bibliography on Transverse Auroral Ion Acceleration’, Ion Acceleration in the Magnetosphere and Ionosphere, American Geophysical Union Monograph, p. 389.Google Scholar
  9. Lin, R. P., Anderson, K. A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G. K., Reme, H., Bosqued, J. M., Coutelier, J., Cotin, F., D’uston, C., Wenzel, K.-P., Sanderson, T. R., Henrion, J., Ronnet, J. C, and Paschmann, G.: 1995, ‘A Three-Dimensional Plasma and Energetic Particle Investigation for the Wind Spacecraft’, Space Sci. Rev. 71, 125.ADSCrossRefGoogle Scholar
  10. McFadden, J. P., Carlson, C. W., and Boehm, M. H.: 1986, ‘Field-Aligned Electron Precipitation at the Edge of an Arc’, J. Geophys. Res. 91, 1723.ADSCrossRefGoogle Scholar
  11. Mozer, F. S.: 1973, ‘Analysis of Techniques for Measuring DC and AC Electric Fields in the Magnetosphere’, Space Sci. Rev. 14, 272.ADSCrossRefGoogle Scholar
  12. Mozer, F. S., Carlson, C. W., Hudson, M. K., Torbert, R. B., Parady, B., Yatteau, J., and Kelley, M. C.: 1977, ‘Observations of Paired Electrostatic Shocks in the Polar Magnetosphere’, Phys. Rev. Lett. 38, 292.ADSCrossRefGoogle Scholar
  13. Temerin, M. A., Carlson, C. W., Cattell, C. A., Ergun, R. E., McFadden, J. P., Mozer, F. S., Klumpar, D. M., Peterson, W. K., Shelley, E. G., and Elphic, R. C.: 1990, in T. Chang et al., (eds.), ‘Wave-Particle Interactions on the FAST Satellite’, Physics of Space Plasmas (1989), p. 343, Scientific Publishers, Inc., Cambridge. MA.Google Scholar
  14. Temerin, M., Cerny, K., Lotko, W., and Mozer, F. S.: 1982, ‘Observations of Double Layers and Solitary Waves in the Auroral Plasma’, Phys. Rev. Lett. 48, 1175.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.University of CaliforniaLos AngelesUSA
  4. 4.Goddard Space Flight CenterGreenbeltUSA
  5. 5.University of MinnesotaMinneapolisUSA

Personalised recommendations