Advertisement

The Electron and Ion Plasma Experiment for Fast

Chapter

Abstract

The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of ‘Top Hat’ electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth’s magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower’ survey’ data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.

Keywords

Pitch Angle Field Programmable Gate Array Spin Plane Goddard Space Flight Center Instrument Data Processor Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boehm, M., Paschmann, G., Clemmons, J., Hoefner, H., Frenzen, R., Ertl, M., Haerendel, G., Hill, P, Lauche, H., Eliasson, L. and Lundin, R.: 1994, ‘The TESP Electron Spectrometer and Correlator (F7) on Freja’, Space Sci. Rev. 70, 509.ADSCrossRefGoogle Scholar
  2. Carlson, C. W., Curtis, D. W., Paschmann, G., and Michael, W.: 1983, in D. McDiarmid (ed.), ‘An Instrument for Rapidly Measuring Plasma Distribution Functions with High Resolution’, Adv. Space Res. 2, 67.Google Scholar
  3. Carlson, C. W., Pfaff, R. W., and Watzin, J. G.: 1998a, ‘The Fast Auroral Snapshot (FAST) mission’, Geophys. Res. Lett., 25, 2013.ADSCrossRefGoogle Scholar
  4. Carlson, C. W. and McFadden, J. P.: 1998, in R. F. Pfaff, J. E. Borovsky, and D. T. Young (eds.), ‘Design and Application of Imaging Plasma Instruments’, Measurement Techniques in Space Plasmas: Particles, Geophys. Monogr. 102, AGU, Washington, p. 125.CrossRefGoogle Scholar
  5. Ergun, R. E., Carlson, C. W., Mozer, F. S., Delory, G. T., Temerin, M., McFadden, J. M., Pankow, D., Abiad, R., Harvey, P., Wilkes, R., Primbsch, H., Elphic, R., Strangeway, R., Pfaff, R., and Cattcll, C. A.: 2000. ‘The FAST Satellite Electric Field and Magnetic Field Instruments’, Space Sci. Rev., this issue.Google Scholar
  6. Gurnett, D. A.: 1974, ‘The Earth as a Radio Source: Terrestrial Kilometric Radiation’. J. Geophys. Res. 79, 4227.ADSCrossRefGoogle Scholar
  7. Harvey, P. R., Curtis, D. W., Heetderks, H. D., Pankow, D., Rauch-Leiba, J. M., Wittenbrock, S. K., and McFadden, J. P.: 2001. ‘The FAST Spacecraft Instrument Data Processing Unit’. Space Sci. Rev., this issue.Google Scholar
  8. Klumpar, D. M.: 1986, in T. Chang (ed.), ‘A Digest and Comprehensive Bibliography on Transverse Auroral Ion Acceleration’. Ion Acceleration in the Magnetosphere and Ionosphere, Geophys. Monogr. 38. AGU. Washington, p. 389.CrossRefGoogle Scholar
  9. McFadden, J. P., Carlson, C. W., and Boehm, M. H.: 1986, ‘Field-aligned Electron Precipitation at the Edge of an Arc’. J. Geophys. Res. 91. 1723.ADSCrossRefGoogle Scholar
  10. McFadden, J. P., Carlson, C. W., Boehm, J. H., and Hallinan, T. J.: 1987, ‘Field-aligned Electron Flux Oscillations that Produce Flickering Aurora’, J. Geophys. Res. 92, 11133.ADSCrossRefGoogle Scholar
  11. McFadden, J. P. and Carlson, C. W.: 1998, in R. F. Pfaff, J. E. Borovsky. and D. T. Young (eds.). ‘Computer Simulation in Designing Electrostatic Optics for Space Plasma Experiments’. Measurement Techniques in Space Plasmas: Particles, Geophys. Monogr. 102. AGU, Washington, p. 249.CrossRefGoogle Scholar
  12. McFadden, J. P., Carlson, C. W., Ergun, R. E., Chaston, C. C., Mozer, F. S., Temerin, M., Klumpar, D. M., Shelley, E. G., Peterson, W. K., Moebius, E., Kistlcr, L., Elphic, R., Strangeway, R., Cattell, C., and Pfaff, R.: 1998b. ‘Electron modulation and ion cyclotron waves observed by FAST’. Geophxs. Res. Lett. 25. 2045.ADSCrossRefGoogle Scholar
  13. McFadden, J. P., Carlson, C. W., and Ergun, R. E.: 1999, ‘Microstructure of the auroral acceleration region as observed by FAST’. J. Geophys. Res. 104, 14453.ADSCrossRefGoogle Scholar
  14. McFadden, J. P., Ergun, R. E., Carlson, C. W., Herrick, W., Loran, J., Vernetti, J., Teitler, W., Bromund, K., and Quinn, T.: 2001. ‘Science Operations and Data Handling for the FAST Satellite’. Space Sci. Rev., this issue.Google Scholar
  15. Mozer, F. S., Carlson, C. W., Hudson, M. K., Torbert, R. B., Parady, B., Yatteau, J., and Kelley, M. C: 1977, ‘Observation s of paired Electrostatic Shocks in the Polar Magnetosphere’, Phys. Rev. Lett. 38, 292.ADSCrossRefGoogle Scholar
  16. Pankow, D., Besuner, R., Ullrich, R., and Wilkes, R.: 2001, ‘Deployment Mechanisms on the FAST Satellite: Radial Wires, Stiff Axials, and Magnetometer Booms’, Space Sci. Rev., this issue.Google Scholar
  17. Pfaff, R., Carlson, C. W., Watzin, J., Everett, D., and Gruner, T.: 2001, ‘An overview of the FAST Auroral Snapshot (FAST) Mission’, Space Sci. Rev., this issue.Google Scholar
  18. Sharp, R. D., Shelley, E. G., Johnson, R. G., and Ghielmetti, A. G.: 1980, ‘Counterstreaming Electron Beams at Altitudes of ∼ 1 RE over the Auroral Zone’, J. Geophys. Res. 85, 92.ADSCrossRefGoogle Scholar
  19. Strangeway, R. J., Kepko, L., Elphic, R. C., Carlson, C. W., Ergun, R. E., McFadden, J. P., Peria, W. J., Delory, G. T., Chaston, C. C., Temerin, M., Cattell, C. A., Moebius, E., Kistler, L. M., Klumpar, D. M., Peterson, W. K., Shelley, E. G., and Pfaff, R. F.: 1998, ‘FAST observations of VLF waves in the auroral zone: Evidence of very low plasma densities’, Geophys. Res. Lett. 25, 2065.ADSCrossRefGoogle Scholar
  20. Temerin, M. A., Carlson, C. W., Cattell, C. A., Ergun, R. E., McFadden, J. P., Mozer, F. S., Klumpar, D. M., Peterson, W.K., Shelley, E. G., and Elphic, R. C: 1990, in T. Chang (ed.), ‘Wave-particle Interactions on the FAST Satellite’, Physics of Space Plasmas, Scientific Publishers, Inc., Cambridge, MA., p. 343.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Lockheed Martin, Advanced Technology CenterPalo AltoUSA

Personalised recommendations