Skip to main content

Partial Differential Equations in Thin Film Flows in Fluid Dynamics and Rivulets

  • Chapter

Part of the book series: NATO Science Series ((ASIC,volume 569))

Abstract

In this set of notes I wish to summarize a few ideas about a class of free-boundary problems that arise in fluid dynamics. In particular, I shall consider the time-dependent motion of thin films in cases where viscous effects are significant. This topic may be considered naturally under the theme “reactive flows” since (i) changes in surface tension produce fluid motions (so-called Marangoni motions) - this is a response that occurs at fluid-fluid interfaces - and (ii) recent research has demonstrated the ability to carefully prepare patterned surfaces on the scale of (sub)microns and so control the movement of small droplets along a surface (e.g. [1], [2]) - these are examples of reactive wetting at solid surfaces (e.g. [3]). Since many common configurations, such as coating operations and spreading of fluid films and droplets, have a liquid layer adjacent to a rigid boundary we shall be content here to outline the basic fluid dynamics equations for thin film flows. Several different examples of nonlinear partial differential equations naturally arise in these problems. As this is a subject with a very large literature, we refer the reader to the references at the end (some of which have extensive reference lists) for more details.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Domingues Dos Santos, F. and Ondarçuhu, T.: 1995, Free-running droplets, Phys. Rev. Lett. 75, 2972–2975.

    Article  Google Scholar 

  2. Lee, S.-W. and Laibinis, P.E.: 1999, Chemically directed movement of liquids on patterned surfaces, preprint.

    Google Scholar 

  3. de Gennes, P.G.: 1997, Forced wetting by a reactive fluid, Europhys. Lett. 39, 407–412.

    Article  Google Scholar 

  4. Barenblatt, G.I.: 1996, Scaling, self-similarity, and intermediate asymptotics, Cambridge University Press.

    Google Scholar 

  5. Eggers, J.: 1993, Universal pinching of 3D axisymmetric free-surface flow, Phys. Rev. Lett. 71, 3458–3461.

    Article  Google Scholar 

  6. Oron, A., Davis, S.H. and Bankoff, S.G.: 1997, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69, 931–980.

    Article  Google Scholar 

  7. Papageorgiou, D.: 1995, On the breakup of viscous liquid threads, Phys. Fluids 7, 1529–1544.

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, M.P., Lister, J.R. and Stone, H.A.: 1996, Pinching threads, singularities and the number 0.0304..., Phys. Fluids 8, 2827–2836.

    Article  MathSciNet  MATH  Google Scholar 

  9. Myers, T.G.: 1998, Thin films with high surface tension, SIAM Rev. 40, 441–462.

    Article  MathSciNet  MATH  Google Scholar 

  10. Pattle, R.E.: 1959, Diffusion from an instantaneous point source with a concentration dependent coefficient, Quart. Jl. Mech. and Appl. Math. 12, 407–409.

    Article  MathSciNet  MATH  Google Scholar 

  11. Pert, G.J.: 1977, A class of similarity solutions of the non-linear diffusion equation, J. Phys. A: Math. Gen. 10, 583–593.

    Article  MATH  Google Scholar 

  12. Huppert, H.E.: 1982, Flow and instability of a viscous current down a slope, Nature 300, 427–429.

    Article  Google Scholar 

  13. Veretennikov, I., Indeikina, A. and Chang, H.-C: 1998, Front dynamics and fingering of a driven contact line, J. Fluid Mech. 373, 81–110.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertozzi, A.L. Brenner, M.P., Dupont, T.F. and Kadanoff, L.P.: 1994, Singularities and similarities in interface flow, in Trends and Perspectives in Applied Mathematics, editor L. Sirovich, Springer-Verlag, Appl. Math. Sci. 100, 155–208.

    Google Scholar 

  15. Acheson, D.J.: 1990, Elementary Fluid Dynamics. Oxford University Press.

    Google Scholar 

  16. Duffy, B.R. and Moffatt, H.K.: 1997, A similarity solution for viscous source flow on a vertical plane, Euro. Jnl. Appl. Math. 8, 37–47.

    MathSciNet  MATH  Google Scholar 

  17. Huppert, H.E.: 1982, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid Mech. 121 43–58.

    Article  Google Scholar 

  18. Jensen, O.E. & Grotberg, J.B.: 1992, Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture, J. Fluid Mech. 240, 259–288.

    Article  MathSciNet  MATH  Google Scholar 

  19. Troian, S.M., Herbolzheimer, E. and Safran, S.A.: 1990, Model for the fingering instability in spreading surfactant drops. Phys. Rev. Lett. 65, 333–336.

    Article  Google Scholar 

  20. Kataoka, D.E. and Troian, S.M.: 1997, A theoretical study of instabilities at the advancing front of thermally driven coating flows, J. Coll. Int. Sci. 192, 350–362.

    Article  Google Scholar 

  21. Smith, S.H.: 1969, On initial value problems for the flow in a thin sheet of viscous liquid, ZAMP 20, 556–560.

    Article  MATH  Google Scholar 

  22. Didden, N. and Maxworthy, T.: 1982, The viscous spreading of plane and axisymmetric gravity currents, J. Fluid Mech. 121, 27–42.

    Article  Google Scholar 

  23. Gratton, J. and Minotti, F.: 1990, Self-similar viscous gravity currents: phase-plane formalism, J. Fluid Mech. 210, 155–182.

    Article  MathSciNet  MATH  Google Scholar 

  24. Moffatt, H.K.: 1994, Fluid Dynamics: Part I. Microhydrodynamics. unpublished notes.

    Google Scholar 

  25. Lister, J.R. and Kerr, R.C.: 1989, The propagation of two-dimensional and ax-isymmetric viscous gravity currents at a fluid interface, J. Fluid Mech. 203, 215–249.

    Article  MathSciNet  MATH  Google Scholar 

  26. Koch, D.M. and Koch, D.L.: 1995, Numerical and theoretical solutions for a drop spreading below a free fluid surface, J. Fluid Mech. 287, 251–278.

    Article  MathSciNet  MATH  Google Scholar 

  27. Starov, V.M.: 1985, Spreading of droplets of nonvolatile liquids over a flat solid, Coll.J. USSR 45, 1009–1015.

    Google Scholar 

  28. Brenner, M.P. and Bertozzi, A.: 1992, Spreading of droplets on a solid surface, Phys. Rev. Lett. 71, 593–596.

    Article  Google Scholar 

  29. Cazabat, A.M., Heslot, F., Troian, S.M. and Carles, P.: 1990, Fingering instability of thin spreading films driven by temperature gradients, Nature 346, 389–392.

    Article  Google Scholar 

  30. Bertozzi, A.L., Münch, A., Fanton, X. and Cazabat, A.M.: 1998, Contact line stability and ‘undercompressive shocks’ in driven thin film flow, Phys. Rev. Lett. 81, 5169–5172.

    Article  Google Scholar 

  31. de Gennes, P.G.: 1985, Wetting: Statics and dynamics, Rev. Mod. Phys. 57, 827–863.

    Article  Google Scholar 

  32. Hocking, L.M.: 1993, The influence of intermolecular forces on thin fluid layers, Phys. Fluids A 5, 793–799.

    Article  Google Scholar 

  33. Zhang, W.W. and Lister, J.R.: 1999, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids 11, 2254–2462.

    Article  MathSciNet  Google Scholar 

  34. Bertozzi, A.L.: 1998, The mathematics of moving contact lines in thin liquid films, Notices of the AMS 45, 689–697.

    MathSciNet  MATH  Google Scholar 

  35. Witelski, T.P. and Bernoff, A.J.: 1999, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids 11, 2443–2445.

    Article  MathSciNet  MATH  Google Scholar 

  36. Diez, J.A., Gratton, R. and Gratton, J.: 1992, Self-similar solution of the second kind for a convergent viscous gravity current, Phys. Fluids 4, 1148–1155.

    Article  Google Scholar 

  37. Angenent, S.B. and Aronson, D.G.: 1995, Intermediate asymptotics for convergent viscous gravity currents, Phys. Fluids 7, 223–225.

    Article  MathSciNet  MATH  Google Scholar 

  38. Smith, P.C.: 1973, A similarity solution for slow viscous flow down an inclined plane, J. Fluid Mech. 58, 275–288.

    Article  MATH  Google Scholar 

  39. Lister, J.R.: 1992, Viscous flows down an inclined plane from point and line sources, J. Fluid Mech. 242, 631–653.

    Article  MathSciNet  MATH  Google Scholar 

  40. Higuera, F.J.: 1995, Steady creeping flow down a slope, Phys. Fluids 7, 2918–2920.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stone, H.A. (2002). Partial Differential Equations in Thin Film Flows in Fluid Dynamics and Rivulets. In: Berestycki, H., Pomeau, Y. (eds) Nonlinear PDE’s in Condensed Matter and Reactive Flows. NATO Science Series, vol 569. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0307-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0307-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0973-0

  • Online ISBN: 978-94-010-0307-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics