Advertisement

Mössbauer study and electron transport properties in Co0.1Fe0.9Cr2S4

  • Sam Jin Kim
  • Woo Chul Kim
  • Jung Chul Sur
  • Chul Sung Kim
Conference paper

Abstract

A sample of Co0.1Fe0.9Cr2S4 has been studied with Mössbauer spectroscopy, X-ray, SQUID magnetometer and magnetoresistance (MR). The crystal structure was determined to be cubic spinel with its lattice constant a0=9.9696 Å. The Mössbauer spectra were recorded from 12 K to room temperature. The asymmetric line broadening is observed and considered to be dynamic. Jahn-Teller distortion. The unusual reduction of magnetic hyperfine field below 100 K could be explained in terms of cancellation effect between the mutually opposite orbital current field (H L ) and Fermi contact field (H C ). The isomer shift value of the sample at room temperature was 0.58 mm/s, which means that the charge state of Fe ions was ferrous in character. The MR peak was observed at 192 K about 10 % at an applied field of 16 kOe. The conduction mechanism in this sample is different from the double exchange mechanism in a point that there were no mixed iron charge valences.

Keywords

Electron Spin Resonance Isomer Shift Conduction Mechanism Quadrupole Splitting Magnetic Hyperfine Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.P. Ramirez, R.J. Cava, and J. Krajewski, Nature 386 (1997) 156.ADSCrossRefGoogle Scholar
  2. [2]
    Z. Yang, S. Tan, Z. Chen, and Y. Zang, Phys. Rev. B 62 (2000) 13872.ADSCrossRefGoogle Scholar
  3. [3]
    H.M. Palmer, C. Greaves, Physica B 276–278 (2000) 568.CrossRefGoogle Scholar
  4. [4]
    M.S. Park, S.K. Kwon, S.J. Youn, and B.I. Min, Phys. Rev. B 59 (1999) 10018.ADSCrossRefGoogle Scholar
  5. [5]
    J.S. Kang, S.J. Kim, C.S. Kim, C.G. Olson, and B.I. Min, Phys. Rev. B 63 (2001) 144412.ADSCrossRefGoogle Scholar
  6. [6]
    A.M. Van Diepen, R.P. Van Stapele. Solid State Commun. 13 (1973) 1651.ADSCrossRefGoogle Scholar
  7. [7]
    L. Brossard, J.L. Dormann, L. Goldstein, P. Gibart, and P. Renaudin, Phys. Rev. B 20 (1979) 2933.ADSCrossRefGoogle Scholar
  8. [8]
    H.N. Ok, K.S. Baek, H.S. Lee, and C.S. Kim, Phys. Rev. B 41 (1990) 62.ADSCrossRefGoogle Scholar
  9. [9]
    M.R. Spender, A.H. Morrish, Can J. Phys. 50 (1972) 1125.ADSCrossRefGoogle Scholar
  10. [10]
    F.K. Lotgering, A.M. van Diepen, and J.F. Olijhohoek, Solid State Commun. 11 (1972) 1417.CrossRefGoogle Scholar
  11. [11]
    C.S. Kim, I.B. Shim, M.Y. Ha, C.S. Kim, and J.Y. Park, J. Appl. Phys. 73 (1993) 5707.ADSCrossRefGoogle Scholar
  12. [12]
    P. Gibart and A. Beguoen-Demeaux, C. R. Acad. Sci (France) 268C (1969) 816.Google Scholar
  13. [13]
    Z. Chen, S.T. Tan, Z. Yang, and Y. Zhang, Phys. Rev. B 59 (1999) 11172.ADSCrossRefGoogle Scholar
  14. [14]
    J.A. Tjon and M. Blume, Phys. Rev. 165 (1968) 456.ADSCrossRefGoogle Scholar
  15. [15]
    H.N. Ok and J.G. Mullen, Phys. Rev. 168 (1968) 563.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Sam Jin Kim
    • 1
  • Woo Chul Kim
    • 1
  • Jung Chul Sur
    • 2
  • Chul Sung Kim
    • 1
  1. 1.Dept. of PhysicsKookmin UniversitySeoulKorea
  2. 2.Dept. of PhysicsWonkwang UniversityJeonbukKorea

Personalised recommendations