Iron Valence in Double Perovskites

  • A. P. Douvalis
  • M. Venkatesan
  • J. M. D. Coey
Conference paper


The valence state of iron in the compounds Ca2FeMoO6, Sr2FeMoO6 Ba2FeMoO6, Ca2FeReO6, Sr2FeReO6, Sr2FeMo1−xW x O6 (x=0.2 and 0.4), and (Sr2−xLax)FeMoO6 (x=0.5 and 0.7), which have been prepared using ceramic and combustion techniques, has been studied using 37Fe Mössbauer spectroscopy. Judging by the isomer shifts and hyperfine fields, intermediate iron oxidation states are found for all these compounds, represented by a 3d5x configuration, where 1<x<5. Here 0.x represents the number of ↓ electrons of Fe(3d) character in the Fe/Mo,W or Fe/Re conduction band.


Valence State Isomer Shift Hyperfine Field Antisite Defect Mossbauer Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K.I. KObayashi, T Kimura, H. Sawada, K. Terakura and Y. Tokura, Nature 395 (1998) 677.ADSCrossRefGoogle Scholar
  2. [2]
    K.I. KObayashi, T. Kimura, Y. Tomioka, H. Sawada and K. Terakura, Phys. Rev. B 59 (1999) 11159.ADSCrossRefGoogle Scholar
  3. [3]
    R.P. Borges, R.M. Thomas, C. Cullinan, J.M.D. Coey, R. Suryanarayanan, L. Ben-Dor, L. Pinsard-Gaudart and A. Revcolevschi, J. Phys.: Condens. Matter 11 (1999) L445.ADSCrossRefGoogle Scholar
  4. [4]
    J.M.D. Coey in: Spin Electronics, eds. M. Ziese and M.J. Thornton (Springer-Verlag Berlin Heidelberg 2001).Google Scholar
  5. [5]
    J.M. Greneche, M. Venkatesan, R. Suryanarayanan and J.M.D. Coey, Phys. Rev. B 63 (2001) 174403.ADSCrossRefGoogle Scholar
  6. [6]
    A.S. Ogale, S.B. Ogale, R. Ramesh and T. Venkatesan, Appl. Phys. Lett. 75 (1999) 537.ADSCrossRefGoogle Scholar
  7. [7]
    A.W. Sleight and J.F. Weiher, J. Phys. Chem. Solids 33 (1972) 679.ADSCrossRefGoogle Scholar
  8. [8]
    A. Maignan, C. Martin, M. Hervieu and B. Raveau, J. Magn. Magn. Mater. 211 (2000) 173.ADSCrossRefGoogle Scholar
  9. [9]
    L. Pinsard-Gaudart, R. Surynarayanan, A. Revcolevschi, J. Rodriguez-Carvajal, J.M. Greneche, P.A.I. Smith, R.M. Thomas, R.P. Borges and J.M.D. Coey, J. Appl. Phys. 87 (2000) 7118.ADSCrossRefGoogle Scholar
  10. [10]
    O. Chmaissem, R. Kruk, B. Dabrowski, D.E. Brown, X. Xiong, S. Kolesnik, J.D. Jorgensen and C.W. Kimball, Phys. Rev. B 62 (2000) 14197.ADSCrossRefGoogle Scholar
  11. [11]
    N.N. Greenwood and T.C. Gibb in: Mössbauer Spectroscopy (Chapman and Hall, London 1971).CrossRefGoogle Scholar
  12. [12]
    H. Kawanaka, I. Hase, S. Toyama and Y. Nishihara, Physica B 281–282 (2000) 518.CrossRefGoogle Scholar
  13. [13]
    D.P.E. Dickson in: Mossbauer Spectroscopy (Cambridge University Press, 1986).Google Scholar
  14. [14]
    T. Saha-Dasgupta and D.D. Sarma, Phys. Rev. B 64 (2001) 064408.ADSCrossRefGoogle Scholar
  15. [15]
    M. Abe, T. Nakagawa and S. Nomura, J. Phys. Soc. Jpn. 35 (1973) 1360.ADSCrossRefGoogle Scholar
  16. [16]
    S. Ray, A. Kumar, D.D. Sarma, R. Cimino, S. Turchini, S. Zennaro and N. Zema, Phys. Rev. Letters 87 (2001) 097204.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • A. P. Douvalis
    • 1
  • M. Venkatesan
    • 1
  • J. M. D. Coey
    • 1
  1. 1.Physics DepartmentTrinity CollegeDublin 2Ireland

Personalised recommendations