Advertisement

129I-MÖssbauer Study of Iodine-Doped Single-Walled Carbon Nanotubes

  • S. Kitao
  • M. Seto
  • Y. Kobayashi
  • R. Haruki
  • S. Masubuchi
  • S. Kazama
  • H. Kataura
  • Y. Maniwa
  • S. Suzuki
  • Y. Achiba

Abstract

The 129I-Mössbauer spectroscopy was applied to the iodine-doped single-walled carbon nanotubes (SWNTs) in the region of heavy and medium doping. Two kinds of SWNTs with different synthesis methods were used as samples. For both samples, the iodine in SWNTs in these doping levels was proved to work as electron acceptors in the forms of triiodides (I 3 ) and pentaiodides (I 5 ) and to exist as iodine molecules (I2) in addition. Moreover, monoiodide ions (I) appear additionally. As the doping level decreases, the proportions of triiodide and monoiodide ions increase, whereas those of pentaiodide ions and iodine molecules decrease. This tendency is in common for both kinds of SWNTs. However, the charge distribution of iodides and the ratios of iodine forms are a little different between two kinds of SWNTs, probably because of difference in morphology and remaining catalysts.

Keywords

Doping Level Electric Field Gradient Iodine Atom Iodine Molecule Iodine Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Iijima, Nature 354 (1991) 56.ADSCrossRefGoogle Scholar
  2. [2]
    For example, M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996) Chap. 19.Google Scholar
  3. [3]
    T. Matsuyama, H. Sakai, H. Yamaoka, Yu. Maeda and H. Shirakawa, J. Phys. Soc. Jpn. 52 (1983) 2238.ADSCrossRefGoogle Scholar
  4. [4]
    S. Kitao, T. Matsuyama, M. Seto, Yu. Maeda, Y.F. Hsia, S. Masubuchi and S. Kazama, Hyperfine Interact. 93 (1994) 1439.ADSCrossRefGoogle Scholar
  5. [5]
    M. Seto, Yu. Maeda, T. Matsuyama, H. Yamaoka and H. Sakai, Synth. Met. 55∓57 (1993) 3167.CrossRefGoogle Scholar
  6. [6]
    L. Grigorian, K.A. Williams, S. Fang, G.U. Sumanasekera, A.L. Loper, E.C. Dickey, S.J. Pennycook and P.C. Eklund, Phys. Rev. Let. 80 (1998) 5560.ADSCrossRefGoogle Scholar
  7. [7]
    A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A 67 (1998) 29.ADSCrossRefGoogle Scholar
  8. [8]
    R.V. Parish, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol.2, ed. G. J. Long (Plenum Press, New York, 1987) Chap. 9.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • S. Kitao
    • 1
  • M. Seto
    • 1
  • Y. Kobayashi
    • 1
  • R. Haruki
    • 1
  • S. Masubuchi
    • 2
  • S. Kazama
    • 3
  • H. Kataura
    • 4
  • Y. Maniwa
    • 4
  • S. Suzuki
    • 5
  • Y. Achiba
    • 5
  1. 1.Research Reactor InstituteKyoto UniversityKumatori, OsakaJapan
  2. 2.Tokyo Medical UniversityTokyoJapan
  3. 3.Department of PhysicsChuo UniversityTokyoJapan
  4. 4.Departrnent of PhysicsTokyo Metropolitan UniversityTokyoJapan
  5. 5.Department of ChemistryTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations