Abstract

This chapter investigates different perspectives on mathematical literacy that vary with the values and rationales of the stakeholders who promote it. The central argument is that it is not possible to promote a conception of mathematical literacy without at the same time — implicitly or explicitly — promoting a particular social practice. It is argued that mathematical literacy focussing on citizenship also refers to the possibility of critically evaluating aspects of the surrounding culture a culture that is more or less colonised by practices that involve mathematics. Thus the ability to understand and to evaluate these practices should form a component of mathematical literacy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the Learning of Mathematics, 5(1), 44–48.Google Scholar
  2. D’Ambrosio, U. (1994). On environmental mathematics education. Zentralblatt für Didaktik der Mathematik, 6, 171–174.Google Scholar
  3. Apple, M. (1997). The new technology: Is it part of the solution or part of the problem in education? In G. Hawisher (Ed.), Literacy, Technology, and Society: Confronting the Issues (pp. 160–176). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  4. Arcavi, A. (1994). Symbol sense: Informal sense making in formal mathematics. For the Learning of Mathematics, 14, 24–35.Google Scholar
  5. Australian Association of Mathematics Teachers (AAMT) (1997). Final Report for the Rich Interpretation of Using Mathematical Ideas and Techniques Key Competency Project. Adelaide.Google Scholar
  6. Baker, D. (1996). Children’s formal and informal school numeracy practices. In D. Baker, J. Clay & C. Fox (Eds.), Challenging Ways of Knowing (pp. 80–88). London: Falmer Press.Google Scholar
  7. Banu, H. (1991). The importance of the teaching of mathematical modelling in Bangladesh. In M. Niss, W. Blum & I. Huntley (Eds.), Teaching of Mat hematical Modelling and Applications (pp. 117–120). Chichester: Ellis Horwood.Google Scholar
  8. Barton, B. (1996). An archaeology of mathematical concepts: Sifting languages for mathematical meanings. In J. G. McLoughlin (Ed.), Canadian Mathematics Education Study Group: Proceedings 1999 Annual Meeting (pp. 45–56). Newfoundland: Memorial University of Newfoundland.Google Scholar
  9. Benn, R. (1997). Adults count too: Mathematics for empowerment. Leicester, UK: National Institute of Adult Continuing Education (NIACE).Google Scholar
  10. Bishop, A. J. (1988). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  11. Blum, W. (1991). Applications and modelling in mathematics teaching — a review of arguments and instructional aspects. In M. Niss, W. Blum & I. Huntley (Eds.), Teaching of Mathematical Modelling and Applications (pp. 10–29). Chichester: Ellis Horwood.Google Scholar
  12. Booß-Bavnbeck, B., Bohle-Carbonell, M., & Pate, G. (1988). Über die Risiken technologischer Lösungen im Grenzbereich unseres Wissens. (On the risks of technological solutions in the threshold of our knowledge). Wissenschaft liche Welt, 32(2), 2–9.Google Scholar
  13. Booß-Bavnbeck, B. (1991). Againstill-founded, irresponsible modelling. In M. Niss, W. Blum & I. Huntley (Eds.), Teaching of Mathematical Modelling and Applications (pp. 70–82). Chichester: Ellis Horwood.Google Scholar
  14. Borba, M. C. (1995). Um estudo de etnomátematica: Sua incorporação na elaboração de uma proposta pedagógica para o ‘Núcleo-Escola’ da Vila Nogueira-Sao Quirino (A study of ethno mathematics, its incorporation into the elaboration of a proposed pedagogy for the ‘School-Centre’ at Vila Nogueira — Sao Quirino). Lisboa: Associação de Professores de Matemática.Google Scholar
  15. Brown, M., Askew, M., Baker, D., Denvir, H., & Millett, A. (1998). Is the national numeracy strategy research-based? British Journal of Educational Studies, 46(4), 362–385.CrossRefGoogle Scholar
  16. Cremin, L. (1988). American Education: The Metropolitan Experience 1876–1980. New York, NY: Harper and Row.Google Scholar
  17. Damerow, P., Elwitz, U., Keitel, C., & Zimmer, J. (1974). Elementarmathematik: Lernen für die Praxis? Ein Versuch der Bestimmung fächerübergreifender Curriculumziele. (Elementary mathematics: Learningfor practice? An attempt to determine cross-curricular goals.) Stuttgart: Klett.Google Scholar
  18. Davis, P. J. (1989). Applied mathematics as a social contract. In C. Keitel, P. Damerow, A. Bishop & P. Gerdes (Eds.), Mathematics, Education, and Society (pp. 24–27). Paris: UNESCO (Science and Technology Education Document Series No. 35).Google Scholar
  19. Davis, P. J., & Hersh, R. (1986). Descartes’ Dream. The World According to Mathematics. Brighton: Harvester Press.Google Scholar
  20. De Castell, S. (2000). Literacies, technologies and the future of the library in the ‘information age’. Journal of Curriculum Studies, 32(3),359–376.CrossRefGoogle Scholar
  21. Dench, S., Perryman, S., & Giles, L. (1998). Employers Perceptions of Key Skills. Brighton: Institute for Employment Studies (Report No. 349).Google Scholar
  22. Department of Education and Science (DES), Central Advisory Council for Education (1959). A Report (‘The Crowther Report’). London: HMSO.Google Scholar
  23. Department of Education and Science/Welsh Office (DES/WO), Committee of Inquiry into the Teaching of Mathematics in Schools (1982). Mathematics Counts (The Cockcroft Report’). London: HMSO.Google Scholar
  24. Dowling, P. (1991). Gender, class, and subjectivity in mathematics: a critique of Humpty Dumpty. For the Learning of Mathematics, 11(1),2–8.Google Scholar
  25. Dreyfuß, T. (1993). Did actic design of computer-based learning environments. In C. Keitel & K. Ruthven (Eds.), Learning from Computers: Mathematics Education and Technology (pp. 101–130). Berlin: Springer.CrossRefGoogle Scholar
  26. Fey, J. T. (1990). Quantity. In L. A. Steen (Ed.), On the Shoulders of Giants: New Approaches to Numeracy (pp. 61–94). Washington, DC: National Academy Press.Google Scholar
  27. Fischer, R. (1993). Mathematics and social change. In S. Restivo, J. P. van Bendegem & R. Fischer (Eds.), Math Worlds: Philosophical and Social Studies of Mathematics and Mathematics Education (pp. 197–219). Albany: State University of New York Press.Google Scholar
  28. FitzSimons, G. E., Jungwirth, H., Maaß, J., & Schlöglmann, W. (1996). Adults and mathematics (adult numeracy). In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International Handbook of Mathematics Education, Part 2 (pp. 755–784). Dordrecht: Kluwer Academic Publisher.Google Scholar
  29. FitzSimons, G. E. (2000). Mathematics for vocational and lifelong learning: Cultural diversity and co-operation in workplace and adult education. In A. Ahmed, J. M. Kraemer & H. Williams (Eds.), Cultural Diversity in Mathematics (Education): CIEAEM 51 (pp.97–102). Chichester: Ellis Horwood.Google Scholar
  30. Frankenstein, M., & Powell, A. (1989). Empowering non-traditional college students. Science and Nature, 9(10),100–112.Google Scholar
  31. Frankenstein, M. (1989). Relearning mathematics: A different third R: Radical maths. London: Free Association Books.Google Scholar
  32. Frankenstein, M. (2000). In addition to the mathematics — goals for a critical mathematical literacy curriculum. In A. Ahmed, J. M. Kraemer & H. Williams (Eds.), Cultural Diversity in Mathematics (Education): CIEAEM 51 (pp. 19–29). Chichester: Ellis Horwood.Google Scholar
  33. Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structures. Dordrecht: Reidel.Google Scholar
  34. Fusaro, B. A. (1995). Environmental mathematics. Zentralblatt für Didaktik der Mathematik, 1,9–12.Google Scholar
  35. Gal, I. (2000). Statistical literacy: Conceptual and instructional issues. In D. Coben, J. O’Donoghue & G. E. FitzSimons (Eds.), Perspectives on Adults Learning Mathematics: Research and Practice (pp. 135–150). Dordrecht: Kluwer Academic Publisher.Google Scholar
  36. Gellert, U. (2000). Historic examples as a means to become critical. In A. Ahmed, J. M. Kraemer & H. Williams (Eds.), Cultural Diversity in Mathematics (Education): CIEAEM 51 (pp. 79–85). Chichester: Ellis Horwood.Google Scholar
  37. Gerdes, P. (1999). Geometrical and educational explorations inspired by African cultural activities. Washington, DC: Mathematical Association of America.Google Scholar
  38. Giroux, H. A. (1989). Schooling for Democracy: Critical Pedagogy in the Modern Age. London: Routledge.Google Scholar
  39. Glance, N., & Hubermann, B. (1994). Das Schmarotzer-Dilemma. (The parasite’s dilemm a) Spektrum der Wissenshaften, 5, 36–41.Google Scholar
  40. Grignon, C; & Passeron, J.C. (1989). Le savant et le populaire: miserabilisme et populisme en sociologie et en literature. Paris: Gallimard.Google Scholar
  41. Herget, W. (1984). Price index: Mathematization without a happy ending. In J.S. Berry, D. N. Burghes, I. D. Huntley, D. G. J. James & A. O. Moscardini (Eds.), Teaching and Applying Mathematical Modelling (pp. 257–268). Chichester: Ellis Horwood.Google Scholar
  42. Holzwarth, A., & Weyer, J. (1992). AIDS-Risikoanalyse für Lebens-und Berufsunfähigkeitsvcrsicherung. (Risk-analysis of AIDS for the assura nce of life and professional inability.) Blätter DGVM, 20, 483–516.CrossRefGoogle Scholar
  43. International Association for the Evaluation of Educational Achievement (IEA) (1997). TIMSS Released Items Set for the Final Year of Secondary School: Mathematics and Science Literacy. Advanced Mathematics. Physics. Chestnut Hill, MA: Boston College.Google Scholar
  44. Jablonka, E. (1996). Meta-Analyse von Zugängen zur mathematischen Modellbildung und Konsequenzen für den Unterrichi. (Meta-analysis of approaches to mathematical modelling and consequences for mathematics classroom practice). Berlin: Transparent Verlag.Google Scholar
  45. Jablonka, E. (2000). Perceptions of mathematics and reality in TIMSS mathematics items. In A. Ahmed, J. M. Kraemer & H. Williams (Eds.), Cultural Diversity in Mathematics (Education): CIEAEM 51 (Commission Internationale pour l’Etude et l’Amélioration de l’Enseignement des Mathématiques) (pp. 127–132). Chichester: Ellis Horwood.Google Scholar
  46. Jablonka, E., & Gellert, U. (2002). Defining mathematical literacy for international student assessment. In L. Bazzini & C. Whybrow Inchley (Eds.), Mathematical Literacy in the Digital Era: CIEAEM 53 (Commission Internationale pour l’Etude et l’Amélioration de l’Enseignement des Mathématiques) (pp. 119–124). Milano, Italy: Ghisetti & Corvi Editori.Google Scholar
  47. Joseph, G.G. (1992). The Crest of the Peacock: Non-European Roots of Mathematics. New York, NY: Penguin Books.Google Scholar
  48. Keitel, C. (1997). Numeracy and scientific and technological literacy. In E. W. Jenkins (Ed.), Innovations in Science and Technology Education (pp. 165–185). Paris: UNESCO.Google Scholar
  49. Keitel, C, Kotzmann, E., & Skovsmose, O. (1993). Beyond the tunnel-vision: Analysing the relationship between mathematics, society and techn ology. In C. Keitel & K. Ruthven (Eds.), Learning from Computers: Mathematics Education and Technology (pp. 243–279). Berlin: Springer.CrossRefGoogle Scholar
  50. Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn Mathematics. Washington, DC: National Academy Press.Google Scholar
  51. Knijnik, G. (2000). Cultural diversity, landless people and political struggles. In A. Ahmed, J. M. Kraemer & H. Williams (Eds.), Cultural Diversity in Mathematics (Education): CIEAEM 51 (pp. 30–39). Chichester: Ellis Horwood.Google Scholar
  52. Knoblauch, C. H. (1990). Literacy and the politics of education. In A. Lunsford, H. Moglen & J. Slevin (Eds.), The Right to Literacy (pp. 74–80). New York, NY: MLA.Google Scholar
  53. Kreith, K. (1993). Building a mathematical base for environmental studies curricula. Davis, CA: Department of Education, University of California.Google Scholar
  54. Maaß, J., & Schlöglrnann, W. (1993). Der Stoßofen. Ein Beispiel für Industriemath ematik als Unterrichtsthema. (The pusher type furnace. An example of industrial mathematics as a topic for mathematics classroom teaching). In W. Blum (Ed.), Anwendungen und Modellbildung imMathematikunterricht (Applications and modelling in mathematics classrooms) (pp. 74–84). Hildesheim: Franzbecker.Google Scholar
  55. Mcintosh, A., Reys, B. J., & Reys, R.E. (1992). A proposed framework for examining basic number sense. For the Learning of Mathematics, 12(3), 2–8.Google Scholar
  56. Morgenstern, O. (1965). Über die Genauigkeit wirtschoftlicher Beobachtungen (On the Accuracy of Economic Observations). Wien und Würzburg: Physica.Google Scholar
  57. Moses, R. P., & Cobb, C. E. Jr. (2001). Radical Equations: Math Literacy and Civil Rights. Boston: Beacon Press.Google Scholar
  58. Noss, R., Hoyles, C; & Pozzi, S. (1998). ESRC end of award report: Towards a mathematical orientation through computational modelling project. London: Mathematical Sciences Group, Institute of Education, London University.Google Scholar
  59. Noss, R. (1997). New Cultures, New Numeracies. Inaugural professorial lecture. London: Institute of Education, London University.Google Scholar
  60. National Science Foundation (NSF) (1994). Science, mathematics, engineering, and technology education for the 21st century. In U.  D’Ambrosio et al. (Eds.), Report on a Summer Symposium on Educating for Citizenship in the 21st Cemury, July 1992 (no page numbers). Washington DC: National Science Foundation.Google Scholar
  61. Nunes, T., Schliemann, A., & Carraher, D. (1993). Street Mathematics and School Mathematics. Cambridge: Cambridge University Press.Google Scholar
  62. Organisation for Economic Co-operation and Development (OECD) (1999). Measuring Student Knowledge and Skills: A New Framework for Assessmem. Paris: OECD.Google Scholar
  63. Paulos, J. A. (1988). Innumeracy. Mathematical Illiteracy and its Consequences. New York, NY: Hill and Wang.Google Scholar
  64. Pimm, D. (1990). Mathematical versus political awareness: Some political dangers inherent in the teaching of mathematics. In R. Noss et al. (Eds.), Political Dimensions of Math ematics Education: Action and Critique (no page numbers). London: Institute of Education, London University.Google Scholar
  65. Rav, Y. (1993). Philosophical problems of mathematics in the light of evolutionary epistemology. In S. Restivo, J. P. van Bendegem & R. Fischer (Eds.), Math Worlds: Philosophical and Social Studies of Mathematics and Mathematics Education (pp.80–112). Albany: State University of New York Press.Google Scholar
  66. Restivo, S. (1993). The social worlds of mathematics. In S. Restivo, J. P. van Bendegem & R. Fischer (Eds.), Math Worlds: Philosophical and Social Studies of Mathematics and Mathematics Education (pp. 246–279). Albany: State University of New York Press.Google Scholar
  67. Richardson, L. F. (1919). Mathematical Psychology of War. W. Hunt (Ed.) (published privately intypescript). Oxford.Google Scholar
  68. Shan, S. J., & Baily, P. (1991). Multiple Factors: Classroom Mathematics for Equality and Justice. Stoke-on-Trent: Trentham Books.Google Scholar
  69. Skovsmose, O., & Nielsen, L. (1996). Critical mathematics education. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International Handbook of Mathematics Education. Part 2 (pp. 1257–1288). Dord recht: Kluwer Academic Publisher.Google Scholar
  70. Skovsmose, O. (1994). Towards a Philosophy of Critical Mathematics Education. Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
  71. Sohn-Rethel, A. (1978). Intellectual and Manual Labour: A Critique of Epistemology. London: Macmillan.Google Scholar
  72. Statistics Canada (1998). National Accounts and the Enoironment: Papers and Proceedings from a Conference, Ottawa, Canada, June 17–20, 1997. Google Scholar
  73. Steen, L. A. (Ed.) (1990). On the Shoulders of Giants: New Approaches to Numeracy. Washington, DC: National Academy Press.Google Scholar
  74. Steen, L. A. (Ed.) (2001). Mathematics and Democracy: The Case for Quantitative Literacy. Princeton NJ: National Council on Educa tion and the Disciplines.Google Scholar
  75. Swetz, F., & Hartzler, J. S. (1991). Mathematical Modelling in the Secondary School Curriculum: A Resource Guide for Classroom Exercises. Reston: NCTM.Google Scholar
  76. Teese, R. (2000). Academic Success and Social Power. Melbourne: Melbourne University Press.Google Scholar
  77. United Nations (1993). Handbook of National Accounting: Integrated Environmental and Economic Accounting. New York: United Nations Department for Economic and Social Information and Policy Analysis.Google Scholar
  78. United Nations (1999). International Accounting and Reporting Issues. New York, Geneva: United Nations.Google Scholar
  79. United Nations (n.d.). Accounting and Financial Reporting for Environmental Costs and Liabilities. New York, Geneva: United Nations.Google Scholar
  80. Verhulst, P. F. (1845). Recherche mathématique sur la loi d’accroissement de la population. Brussels: Mémoires de l’Académie Royale des sciences, des lettres et de beaux-arts de Belgique.Google Scholar
  81. Vithal, R., & Skovsmose, O. (1997). The end of innocence: a critique of ethnomathematics. Educational Studies of Mathematics, 34(2), 131–157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Eva Jablonka
    • 1
  1. 1.Freie Universität BerlinGermany

Personalised recommendations