Skip to main content

Notes on the Deconfining Phase Transition

  • Chapter
QCD Perspectives on Hot and Dense Matter

Part of the book series: NATO Science Series ((NAII,volume 87))

Abstract

I review the deconfining phase transition in an SU(N) gauge theory without quarks. After computing the interface tension between Z(N) degenerate vacua deep in the deconfined phase, I follow Giovannangeli and Korthals Altes, and suggest a new model for (discrete) Polyakov loop spins. Effective theories for (continuous) Polyakov loop spins are constructed, including those with Z(N) charge greater than one, and compared with Lattice data. About the deconfining transition, the expectation values of Z(N) singlet fields (“quarkless baryons”) may change markedly. Speculations include: a possible duality between Polyakov loop and ordinary spins in four dimensions, and how Z(N) bubbles might be guaranteed to have positive pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. M. Polyakov, Phys. Lett. B 72 (1978) 477.

    Article  MathSciNet  ADS  Google Scholar 

  2. G. ’tHooft, Nucl. Phys. B 138 (1978) 1; ibid. 153 (1979) 141.

    Article  MathSciNet  ADS  Google Scholar 

  3. B. Svetitsky and L. G. Yaffe, Nucl. Phys. B 210 (1982) 423.

    Article  ADS  Google Scholar 

  4. F. Karsch, E. Laermann and A. Peikert, Phys. Lett. B 478 (2000) 447; Nucl. Phys. B 605 (2001) 579.

    Article  ADS  Google Scholar 

  5. F. Karsch, lectures in this volume.

    Google Scholar 

  6. R. V. Gavai and S. Gupta, Phys. Rev. D 64 (2001) 074506.

    Article  ADS  Google Scholar 

  7. K. Kajantie, M. Laine, J. Peisa, A. Rajantie, K. Rummukainen and M. E. Shaposhnikov, Phys. Rev. Lett. 79 (1997) 3130; M. Laine and O. Philipsen, Nucl. Phys. B 523 (1998) 267; Phys. Lett. B 459 (1999) 259; A. Hart and O. Philipsen, Nucl. Phys. B 572 (2000) 243; A. Hart, M. Laine and O. Philipsen, Nucl. Phys. B 586 (2000) 443.

    Article  ADS  Google Scholar 

  8. R. V. Gavai and S. Gupta, Phys. Rev. Lett. 85 (2000) 2068.

    Article  ADS  Google Scholar 

  9. P. Arnold and C. Zhai, Phys. Rev. D 50 (1994) 7603; ibid. 51 (1995) 1906; E. Braaten, Phys. Rev. Lett. 74 (1995) 2164; E. Braaten and A. Nieto, Phys. Rev. D 53 (1996) 3421; B. Kastening and C. Zhai, ibid. 52 (1995) 7232; R. R. Parwani and C. Coriano, Phys. Rev. Lett. 73 (1994) 2398; Nucl. Phys. B 434 (1995) 56.

    Article  ADS  Google Scholar 

  10. F. Karsch, Z. Phys. C 38 (1988) 147; D. H. Rischke, M. I. Gorenstein, H. Stöcker, and W. Greiner, Phys. Lett. B 237 (1990) 153; A. Peshier, B. Kampfer, O.P. Pavlenko, and G. Soff, Phys. Rev. D 54 (1996) 2399; P. Levai and U. Heinz, Phys. Rev. C 57 (1998) 1879.

    Article  ADS  Google Scholar 

  11. R. D. Pisarski, Phys. Rev. Lett. 63 (1989) 1129; E. Braaten and R. D. Pisarski.Nucl. Phys. B 337 (1990) 569; J. C. Taylor and S. M. Wong, ibid. 346 (1990) 115; E. Braaten and R. D. Pisarski, Phys. Rev. D 45 (1992) 1827. J. P. Blaizot and E. Iancu, Phys. Rept. 359 (2002) 355, and references therein.

    Article  ADS  Google Scholar 

  12. A. Rebhan, lectures in this volume.

    Google Scholar 

  13. J.-P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. Lett. 83 (1999) 2906; Phys. Lett. B 470 (1999) 181; Phys. Rev. D 63 (2001) 065003; arXiv:hep-ph/0104033; arXiv:hep-ph/0110369.

    Article  ADS  Google Scholar 

  14. J. O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. Lett. 83 (1999) 2139; Phys. Rev. D 61 (2000) 014017; ibid., D61 (2000) 074016; ibid., D62 (2000) 045004; ibid., D63 (2001) 105008.

    Article  ADS  Google Scholar 

  15. P. Arnold and L. G. Yaffe, Phys. Rev. D 52 (1995) 7208.

    Article  ADS  Google Scholar 

  16. M. Laine, Nucl. Phys. B 451 (1995) 484; K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Nucl. Phys. B 458 (1996) 90; Nucl. Phys. B 502 (1997) 357; M. Laine and A. Rajantie, Nucl. Phys. B 513 (1998) 471; K. Kajantie, M. Laine, K. Rummukainen and Y. Schroder, Phys. Rev. Lett. 86 (2001) 10; K. Kajantie, M. Laine and Y. Schroder, Phys. Rev. D 65 (2002) 045008. K. Kajantie, M. Laine, K. Rummukainen and Y. Schroder, arXiv:hep-lat/0110122.

    Article  ADS  Google Scholar 

  17. G. G. Batrouni and B. Svetitsky, Phys. Rev. Lett. 52 (1984) 2205; A. Gocksch and M. Okawa, ibid. 52 (1984) 1751; F. Green and F. Karsch, Phys. Rev. D 29 (1984) 2986; J. F. Wheater and M. Gross, Phys. Lett. B 144 (1984) 409; Nucl. Phys. B 240 (1984) 253; S. Ohta and M. Wingate, Nucl. Phys. Proc. Suppl. B 73 (1999) 435; ibid. 83 (2000) 381; Phys. Rev. D 63 (2001) 094502; R. V. Gavai, hep-lat/0110054.

    Article  ADS  Google Scholar 

  18. A. Gocksch and F. Neri, Phys. Rev. Lett. 50 (1983) 1099; M. Billo, M. Caselle, A. D’Adda, and S. Panzeri, Int. J. Mod. Phys. A12 (1997) 1783.

    Article  ADS  Google Scholar 

  19. R. D. Pisarski, Phys. Rev. D 29 (1984) 1222; R. D. Pisarski and M. H. G. Tytgat, in “Hirschegg’ 97: QCD Phase Transitions”, edited by H. Feldmeier et al. (GSI Publishing, Darmstadt, 1997); arXiv:hep-ph/9702340.

    Article  ADS  Google Scholar 

  20. P. H. Damgaard, Phys. Lett. B 194 (1987) 107; J. Engels, J. Fingberg, K. Redlich, H. Satz, and M. Weber, Z. Phys. C 42 (1989) 341; J. Kiskis, Phys. Rev. D 41 (1990) 3204; J. Fin-gberg, D. E. Miller, K. Redlich, J. Seixas, and M. Weber, Phys. Lett. B 248 (1990) 347; J. Christensen and P. H. Damgaard, Nucl. Phys. B 348 (1991) 226; P. H. Damgaard and M. Hasenbusch, Phys. Lett. B 331 (1994) 400; J. Kiskis and P. Vranas, Phys. Rev. D 49 (1994) 528; J. Engels, F. Karsch, K. Redlich.Nucl. Phys. B 435 (1995) 295; J. Engels, S. Mashkevich, T. Scheideier, and G.Zinovev, Phys. Lett. B 365 (1996) 219; J. Engels and T. Scheideler, Phys. Lett. B 394 (1997) 147; Nucl. Phys. B 539 (1999) 557.

    Article  ADS  Google Scholar 

  21. P. Bacilieri et al., Phys. Rev. Lett. 61 (1988) 1545; F.R. Brown et al., ibid. 61 (1988) 2058; A. Ukawa, Nucl. Phys. Proc. Suppl. B 17 (1990) 118; ibid. 53 (1997) 106; E. Laermann, ibid. 63 (1998) 114; F. Karsch, ibid. 83 (2000) 14.

    Article  ADS  Google Scholar 

  22. O. Kaczmarek, F. Karsch, E. Laermann and M. Lutgemeier, Phys. Rev. D 62 (2000) 034021.

    Article  ADS  Google Scholar 

  23. T. Banks and A. Ukawa, Nucl. Phys. B 225 (1983) 145.

    Article  ADS  Google Scholar 

  24. A. Patel, Nucl. Phys. B 243 (1984) 411; Phys. Lett. B 139 (1984) 394; F. Takagi, Phys. Rev. D 34 (1986) 1646 C. DeTar, Phys. Rev. D 37 (1988) 2328; C. Rosenzweig and A. M. Srivastava, Phys. Rev. D 42 (1990) 4228; A. Momen and C. Rosenzweig, Phys. Rev. D 56 (1997) 1437; M. Engelhardt, K. Langfeld, H. Reinhardt and O. Tennert, Phys. Rev. D 61 (2000) 054504; M. Engelhardt and H. Reinhardt, Nucl. Phys. B 585 (2000) 591; J. Condella and C. DeTar, Phys. Rev. D 61 (2000) 074023.

    Article  ADS  Google Scholar 

  25. R. D. Pisarski, Phys. Rev. D 62 (2000) 111501.

    Article  ADS  Google Scholar 

  26. A. Dumitru and R. D. Pisarski, Phys. Lett. B 504 (2001) 282.

    Article  ADS  MATH  Google Scholar 

  27. A. Dumitru and R. D. Pisarski, arXiv:hep-ph/0106176.

    Google Scholar 

  28. A. Dumitru, O. Scavenius, and A. D. Jackson, Phys. Rev. Lett. 87 (2001) 182302.

    Article  ADS  Google Scholar 

  29. J. Wirstara, Phys. Rev. D 65 (2002) 014020.

    Article  ADS  Google Scholar 

  30. P. N. Meisinger, T. R. Miller, and M. C. Ogilvie, hep-ph/0108009; P. N. Meisinger and M. C. Ogilvie, hep-ph/0108026.

    Google Scholar 

  31. A. Dumitru and R. D. Pisarski, Nucl. Phys. Proc. Suppl. B 106 (2002) 483; R. D. Pisarski, hep-ph/0112037.

    Article  ADS  Google Scholar 

  32. T. Bhattacharya, A. Gocksch, C. Korthals Altes and R. D. Pisarski, Phys. Rev. Lett. 66 (1991) 998; Nucl. Phys. B 383 (1992) 497.

    Article  ADS  Google Scholar 

  33. C. P. Korthals Altes, Nucl. Phys. B 420 (1994) 637.

    Article  ADS  Google Scholar 

  34. J. Polchinski, Phys. Rev. Lett. 68 (1992) 1267; J. Boorstein and D. Kutasov, Phys. Rev. D 51 (1995) 7111; C. Korthals Altes, A. Michels, M. Stephanov and M. Teper, Phys. Rev. D 55 (1997) 1047; C. Korthals-Altes, A. Kovner and M. Stephanov.Phys. Lett. B 469 (1999) 205; C. Korthals-Altes and A. Kovner,Phys. Rev. D 62 (2000) 096008.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A. Gocksch and R. D. Pisarski, Nucl. Phys. B 402 (1993) 657.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. C. P. Korthals Altes, in “Festschrift for M. Veltman”, eds R. Akhoury et al. (World Scientific Press, Singapore, 1992); C. P. Korthals Altes, hep-th/9402028.

    Google Scholar 

  37. P. Giovannangeli and C. P. Korthals Altes, Nucl. Phys. B 608 (2001) 203.

    Article  ADS  MATH  Google Scholar 

  38. V. Dixit and M. C. Ogilvie, Phys. Lett. B 269 (1991) 353; J. Ignatius, K. Kajantie and K. Rummukainen,Phys. Rev. Lett. 68 (1992) 737; C. P. Korthals Altes, K. Y. Lee and R. D. Pisarski.Phys. Rev. Lett. 73 (1994) 1754; C. P. Korthals Altes and N. J. Watson, Phys. Rev. Lett. 75 (1995) 2799; S. Bronoff, G.Dvali, K. Farakos, and C. P. Korthals Altes, “Proceedings Strong and Electrowoweak Matter (SEWM 97)”, pg 192-212, Ed. Z. Fodor, (World Scientific Press, Singapore, 1997); C. P. Korthals Altes, R. D. Pisarski and A. Sinkovics.Phys. Rev. D 61 (2000) 056007.

    Article  ADS  Google Scholar 

  39. V. M. Belyaev, I. I. Kogan, G. W. Semenoff and N. Weiss. Phys. Lett. B 277 (1992) 331; W. Chen, M. I. Dobroliubov and G. W. Semenoff.Phys. Rev. D 46 (1992) 1223; 1.1. Kogan, Phys. Rev. D 49 (1994) 6799; A. V. Smilga, Annals Phys. 234 (1994) 1; A. V. Smilga, Surveys High Energ. Phys. 10 (1997) 233; J. E. Kiskis, Nucl. Phys. Proc. Suppl. 53 (1997) 465.

    Article  ADS  Google Scholar 

  40. A. M. Polyakov, Nucl. Phys. B 164 (1980) 171; I. Y. Arefeva, Phys. Lett. B 93 (1980) 347; V. S. Dotsenko and S. N. Vergeles, Nucl. Phys. B 169 (1980) 527; L. Gervais and A. Neveu, Nucl. Phys. B 163 (1980) 189.

    Article  MathSciNet  ADS  Google Scholar 

  41. E. Gava and R. Jengo, Phys. Lett. B 105 (1981) 285.

    Article  ADS  Google Scholar 

  42. K. Enqvist, K. Kajantie, L. Karkkainen and K. Rummukainen, Phys. Lett. B 249 (1990) 107.

    Article  ADS  Google Scholar 

  43. F. Zantow, O. Kaczmarek, F. Karsch and P. Petreczky, arXiv:hep-lat/0110103; arXivihep-lat/0110106.

    Google Scholar 

  44. A. M. Tsvelik, “Quantum Field Theory in Condensed Matter Physics” (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  45. J. Nagle and T. Ulrich, lectures in this volume.

    Google Scholar 

  46. Y. Dokshitzer, E. Iancu, D. Kharzeev, L. McLerran, and R. Venugopalan, lectures in this volume.

    Google Scholar 

  47. L. D. McLerran and B. Svetitsky, Phys. Rev. D 24 (1981) 450.

    Article  ADS  Google Scholar 

  48. P. W. Anderson, Phys. Rev. 109 (1958) 1498.

    ADS  Google Scholar 

  49. G. C. Rossi and G. Veneziano, Nucl. Phys. B 123 (1977) 507; Nucl. Phys. B 123, 507 (1977). E. Witten, Nucl. Phys. B 160 (1979) 57; L. Montanet, G. C. Rossi and G. Veneziano, Phys. Rep. 63 (1980) 149; D. Kharzeev, Phys. Lett. B 378 (1996) 238.

    Article  ADS  Google Scholar 

  50. L. F. Abbott, Nucl. Phys. B 185 (1981) 189, and references therein.

    Article  ADS  Google Scholar 

  51. P. Bialas, A. Morel, B. Petersson, K. Petrov and T. Reisz, Nucl. Phys. B 581 (2000) 477; P. Bialas, A. Morel, B. Petersson and K. Petrov, Nucl. Phys. B 603 (2001) 369; Nucl. Phys. Proc. Suppl. B 106 (2002) 882; arXiv:hep-lat/0112008.

    Article  ADS  Google Scholar 

  52. M. Gyulassy, nucl-th/0106072.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pisarski, R.D. (2002). Notes on the Deconfining Phase Transition. In: Blaizot, JP., Iancu, E. (eds) QCD Perspectives on Hot and Dense Matter. NATO Science Series, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0267-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0267-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1036-1

  • Online ISBN: 978-94-010-0267-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics