Skip to main content

PCB — Approaches to Removal From the Environment

Current Status of Bioremediation in the Czech Republic

  • Chapter

Part of the book series: NATO Science Series ((NAIV,volume 15))

Abstract

Polychlorinated biphenyls (PCBs) belong to the group of the most recalcitrant compounds with proved negative effect on the human health. They may be removed from the environment by chemical, physical and biological methods, while the latter ones through microorganisms or plants represent more economical way of removal. This study describes use of bacteria isolated in the Czech Republic from PCB contaminated sites. Several physiological characteristics of biodegradation and different ways of process improvement are documented. The utilization of microbial consortia of chlorobiphenyl and chlorobenzoate degrading bacteria is proposed. The beneficial effect of natural compounds of plant origin for the induction of PCB upper degradation pathway is also discussed.

Depending on the chloride substitution, bacteria use different routes to complete their mineralisation. In this study, we have also investigated a possibility for the complementation of both ortho- and meta-cleavage pathway for chlorocatechols — intermediates of lower PCB metabolic pathway in one strain and its potential impact for degradation of chlorobenzoates, which are known to accumulate during degradation of polychlorinated biphenyls (PCBs). Two lab-scale studies addressed to enhance the aerobic bioremediation of an aged PCB- contaminated soil (containing about 350 mg/kg of a variety of PCBs) through its amendment with defined PCB-bioavailability enhancing agents are reviewed.

The aerobic bioremediation of the aged-contaminated soil employed was found to be significantly and differently influenced by the presence of Triton X-100 (TX-100), Quillaya Saponin (QS), Hydroxypropyl-β-Cyclodextrin (HP-β-CD) and γCyclodextrin (γCD) in the soil slurry-phase and fixed-phase aerobic reactors used in the experiment. Among the tested PCB-solubilizing agents, the biogenic products QS, γ-CD and in particular HP-β-CD were found to be very promising bioremediation stimulating agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hooper, C.P., Pettigrew and Sayler, G.S. (1990) Ecological fate, effects and prospects for the elimination of environmental polychlorinated biphenyls (PCBs), Environ. Toxicol Chem. 9, 655–667.

    CAS  Google Scholar 

  2. Kalantzi, O.I., Alcock, R.E., Johnston, P.A., Santillo, D., Stringer, R.L., Thomas, G.O., and Jones, K.C. (2001) The global distribution of PCBs and organochlorine pesticides in butter, Environ. Sci. Technol. 36, 1013–1018.

    Google Scholar 

  3. Quensen III, J.F., Tiedje, J.M. (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments, Science 242, 752–754.

    CAS  Google Scholar 

  4. Brown, J.F., Bedard, D.L., Brennan, M.J., Carnahan, J.C., Feng, H., and Wagner, R.E. (1989) Polychlorinated biphenyl dechlorination in aquatic sediments, Science 236,709–712.

    Google Scholar 

  5. Morris, P.J., Mohn, W.W., Quensen, J.F., Tiedje, J.M. and Boyd, S.A. (1992) Establishment of polychlorinated biphenyl/degrading enrichment culture predominantly meta dechlorination, Appl Environm. Microbiol. 58, 3088–3094.

    CAS  Google Scholar 

  6. Niels, L. and Vogel, T.M. (1990) Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediment, Appl. Environm. Microbiol. 56, 2612–2617

    Google Scholar 

  7. Dorn E., and Knackmuss, H.J. (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol, Biochem. J. 174, 85–94.

    CAS  Google Scholar 

  8. Abramowicz, D.A. (1990) Aerobic and anaerobic degradation of PCBs>a review, CRC Crit Rev. Biotechnol. 10, 241–251.

    CAS  Google Scholar 

  9. Furukawa K., Tonomura, K. and Kamibayashi, A. (1978) Effect of chlorine substitution on biodegradability of polychlorinated biphenyls, Appl. Environ. Microbiol. 35, 223–227.

    CAS  Google Scholar 

  10. Bedard, D.L., Unterman, R., Bopp, L.H., Brennan, M.J., Haberl, M.L., Johnson, C. (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls, Appl. Environ. Microbiol. 51, 761–768.

    CAS  Google Scholar 

  11. Furukawa, K. (1994) Molecular genetics and evolutionary relationship of PCB-degrading bacteria, Biodegradation 5, 289–300.

    CAS  Google Scholar 

  12. Haddock, J.D. and Gibson D. T. (1995) Purification and characterization of the oxygenase component of biphenyl 2,3-dioxygenase from Pseudomonas sp. Strain LB400.

    Google Scholar 

  13. Seeger, M., Timmis, K.N., Hofer B. Degradation of chlorobiphenyls catalyzed by the bph-encoded bipheny1-2,3 dioxygenase and biphenyl-2,3,-dihydrodiol-2,3-dehydrogenase of Pseudomonas sp. LB 400, FEMS Microbiol Lett. 133, 259–264.

    Google Scholar 

  14. Seeger, M., Zielinski, M., Timmis, K.N., and Hofer, B. (1999) Regiospecifity of dioxygenation of di-to pentachlorobiphenyls and their degradation to chlorobenzoates by bph-encoded catabolic pathway of Burkholderia sp. strain LB 400, Appl Environ. Microbiol 65, 3614–3621.

    CAS  Google Scholar 

  15. Massé, R., F. Messier, L. Péloquin, C., Ayotte, M., Sylvestre (1984) Microbial biodegradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyl, Appl Environ. Microbiol 47: 947–951.

    Google Scholar 

  16. Bokvajová, A., Burkhard, J., Demnerová, K. and Pazlarová, J. (1994) Screening and separation of microorganisms degrading PCBs, Environ. Health Persp. 102, 552–554.

    Google Scholar 

  17. Kaštánek, F., Kuncová, G., Demnerová, K., Pazlarová, J., Burkhard, J., Maléterová, Y. (1995) Laboratory and pilot-scale sorption and biodegradation of polychlorinated biphenyls from ground water, Inter. Biodeterior. Biodegr., 287–300.

    Google Scholar 

  18. Pazlarová, J., Demnerovâ, K., Macková, M. and Burkhard J. (1997) Analysis of PCB-degrading bacteria: physiological aspects, Lett. Appl. Microbiol. 24, 334–336.

    Google Scholar 

  19. Macková, M., Macek, T., Očenášková, J., Burkhard J., Demnerová, K., Pazlarová, J. (1997) Biodegradation of polychlorinated biphenyls by plant cells, Int. Biodeterior. Biodegrad. 39, 317–325.

    Google Scholar 

  20. Kučerová P., Macková M., Chromá L., Burkhard J., Tříska J., Demnerová K. and Macek T. (2000) Metabolism of polychlorinated biphenyls by Solanum nigrum hairy root clone SNC-9O and analysis of transformation products, Plant and Soil 225, 109–115.

    Google Scholar 

  21. Sondossi, M., Sylvestre M., Ahmad D. (1992) Effects of chlorobenzoate transformation on the Ps. testosteroni biphenyl and chlorobiphenyl degradation pathway, Appl. Environ. Microbiol. 58, 485–489.

    CAS  Google Scholar 

  22. Guibeault, B., Sondossi, M., Darakhsan, A., and Sylvestre, M. (1994) Factors affecting the enhancement of PCB degradative ability of soil microbial populations, Int. Biodeterior. Biodegrad. 33, 73–91.

    Google Scholar 

  23. Stratford, J., Wright, M.A., Reineke, W., Mokross, H., Havel, J., Knowles, Ch. J., Robinson G. K. (1996) Influence of chlorobenzoates on the utilization of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate— mineralising hybrid bacterial strains, Arch. Microbiol. 165, 213–218.

    CAS  Google Scholar 

  24. Nováková, H., Pazlarová, J., Demnerová, K., Macková, M. and Burkhard J. (2000) Biphenyl dioxygenase specifity of indigenous bacterial strains, Proceedings of the Fifth International symposium and exhibition on environmental contamination in Central and Eastern Europe p. 102–103 (poster No. 145).

    Google Scholar 

  25. Amorim, H., V., Dougall D.K., Sharp W.R. (1977) The effect of carbohydrate and nitrogen concentration on phenol synthesi in Paul Scarlet rose cells grown in tissue culture, Physiol. Plantarum 39, 91–95.

    CAS  Google Scholar 

  26. Donelly P.K., Hedge R.S., Fletcher J.S. (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants, Chemosphere 28, 981–988.

    Google Scholar 

  27. Gilbert, E.S., Crowley D.E. (1997) Plant compounds that induce PCB biodegradation by Arthrobacter sp. strain B1B, Appl Environm. Microbiol. 63, 1933–1938.

    CAS  Google Scholar 

  28. Pederson, T.F. (1999) The enhancement of PCB degradation by bacterial cultures, Diploma thesis, ICTP, Prague 1999.

    Google Scholar 

  29. Mc Cullar, M., Brenner, V., Adams, R.H., and D.D. Focht (1994) Construction of a novel polychlorinated biphenyl-degrading bacterium: Utilization of 3,4′-dichlorobiphenyl by the strain Pseudomonas acidovorans M3GY. Appl. Environ. Microbiol 60, 3833–3839.

    CAS  Google Scholar 

  30. Brenner, V., Arensdorf, J.J., and Focht, D.D. (1994) Genetic construction of PCB degraders, Biodegradation 5, 359–377.

    CAS  Google Scholar 

  31. Hickey, W.J., D.D. Focht (1990) Degradation of mono-, di-, and trihalogenated benzoic acid by Pseudomonas aeruginosa JB2, Appl. Environ. Microbiol 56, 3842–3850.

    CAS  Google Scholar 

  32. Adams RH, Huang CM, Higson FK, Brenner V and Focht DD (1992) Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl Environ Microbiol 58, 647–654.

    CAS  Google Scholar 

  33. Ahmed M and Focht DD (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter, Can J Microbiol 19, 47–52.

    CAS  Google Scholar 

  34. Arensdorf JJ and Focht DD (1994) Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls, Appl Environ Microbiol 60, 2884–2889.

    CAS  Google Scholar 

  35. Arensdorf JJ and Focht DD (1995) A meta cleavage pathway for 4-chlorobenzoate, and intermediate in the metabolism of 4-chlorobiphenyl by Burkholderia cepacia P166, Appl Environ Microbiol 61, 443–447.

    CAS  Google Scholar 

  36. Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols, Appl Environ Microbiol 47, 500–505.

    CAS  Google Scholar 

  37. Bedard DL and Haberl ML (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains, Microbiol Ecol 20, 87–102.

    CAS  Google Scholar 

  38. Blasco R, Mallavarapu M, Wittich RM, Timmis KN, Pieper DH (1997) Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-cometabolizing microorganisms, Appl Environ Microbiol 63, 427–434.

    CAS  Google Scholar 

  39. Focht DD (1993) Microbial degradation of chlorinated biphenyls, Soil Biochemistry, vol 8, Marcel Dekker Inc., New York..

    Google Scholar 

  40. Frantz B, Aldrich T and Chakrabarty AM (1987) Microbial degradation of synthetic recalcitrant compounds, Biotech Adv 5, 85–99.

    CAS  Google Scholar 

  41. Havel J and Reineke W (1991) Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol Lett 78, 163–170.

    CAS  Google Scholar 

  42. Hickey WJ, Brenner V and Focht DD (1992) Mineralization of 2-chloro-and 2,5-dichlorobiphenyl by Pseudomonas sp. strain UCR2, FEMS Microbiol Lett 98, 175–180.

    CAS  Google Scholar 

  43. Kaschabek SR, Kasberg T, Müller D, Mars AE, Janssen DB, Reineke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31, J Bacteriol 180, 296–302.

    CAS  Google Scholar 

  44. Keen NT, Tamaki S, Kobayashi D and Trollinger D. (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria, Gene 70, 191–197.

    CAS  Google Scholar 

  45. McCullar MV, Brenner V, Adams RH and Focht DD (1994) Construction of a novel PCB-degrading bacterium: utilization of 3,4′-dichlorobiphenyl by Pseudomonas acidovorans M3GY, Appl Environ Microbiol 60, 3833–3839.

    CAS  Google Scholar 

  46. Mokross H, Schmidt E and Reineke W (1990) Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads, FEMS Microbiol Lett 71, 179–186.

    CAS  Google Scholar 

  47. Pavlů L, Vosáhlová J, Klierová H, Prouza M, Demnerová K, Brenner V (1999) Characterization of chlorobenzoate degraders isolated from polychlorinated biphenylcontaminated soil and sediment in the Czech Republic, J Appl Microbiol 87, 381–386.

    Google Scholar 

  48. Reineke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31, J Bacteriol 180, 296–302.

    Google Scholar 

  49. Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly, Annu Rev Microbiol 52, 287–331.

    CAS  Google Scholar 

  50. Reineke W and Knackmuss HJ (1988) Microbial degradation of haloaromatics, Annu Rev Microbiol 42, 263–287.

    CAS  Google Scholar 

  51. Sayler GS and Fox R (1990) Environmental Biotechnology and waste treatment, Plenum Press, New York.

    Google Scholar 

  52. Sambrook J, Fritsch EF and Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory, NY.

    Google Scholar 

  53. van der Meer JR, van Neerven ARW, de Vries EJ, de Vos WM and Zehnder AJB (1991) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzoate of Pseudomonas sp. strain P51, J Bacteriol 173, 6–15.

    Google Scholar 

  54. Focht, D.D. (1995) Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls, Curr. Opinion Biotechnol 6, 341–346.

    CAS  Google Scholar 

  55. Harkness, M.R., McDermott, J.B., et al (1993) In situ stimulation of aerobic PCB biodegradation in Hudson river sediments, Science 259, 503–507.

    CAS  Google Scholar 

  56. Flanagan, W.P. and May R.J. (1993) Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediments, Environ. Sci. Technol. 27, 2207–2212.

    CAS  Google Scholar 

  57. Abramowicz, D.A., Brown, J.F.Jr., Harkness, M.R. and O'Donnell, M.K. (1996) Biotechnology in Industrial waste treatment and bioremediation, CRC Press, Inc. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  58. Bedard, D.L. and Quensen, J.F. (1995) Microbial Transformation and degradation of toxic organic chemicals, Wiley-Liss, USA.

    Google Scholar 

  59. Robinson, G.K., and Lenn, MJ. (1994) The bioremediation of polychlorinated biphenyls (PCBs): problems and perspectives, Biotechnol. Gen. Engineer. Rev. 12, 139–188.

    CAS  Google Scholar 

  60. Fiebig, R., Schulze, D., Erlemann, P., Slawinski, M., and Dellweg, H. (1993) Microbial degradation of polychlorinated biphenyls in contaminated soil, Biotechnol Lett. 15, 93–98.

    CAS  Google Scholar 

  61. Barriault, D., and Sylvestre, M. (1993) Factors affecting PCB biodegradation by implanted bacterial strain in soil microcosms, Can. J. Microbiol 39, 594–602.

    CAS  Google Scholar 

  62. Fava, F., Di Gioia, D. and Marchetti, L. (1998) Cyclodextrin effects on the ex-situ bioremediation of a chronically polychlorobiphenyl-contaminated soil, Biotechnol. Bioeng. 58, 345–355.

    CAS  Google Scholar 

  63. Fava, F. and Di Gioia, D. (1998) Effects of Triton X-100 and Quillaya Saponin on the ex-situ bioremediation of a chronically polychlorobipherryl-contaminated soil, Appl Microbiol. Biotechnol 50, 623–630.

    CAS  Google Scholar 

  64. Anid, P.J., Nies, L. and Vogel, T.M. (1991) On-site Bioreclamation, Butterworth-Heinemann, MA, USA.

    Google Scholar 

  65. Evans, B.S., Dudley, C.A., and Klasson, K.T. (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms, Appl. Biochem. Biotechnol, 57/58, 885–894.

    CAS  Google Scholar 

  66. Kastanek, F., Demnerova K., Pazlarova J., Burkhard, J., and Maleterova, Y. (1999) Biodegradation of polychlorinated biphenyls and volatile chlorinated hydrocarbons in contaminated soils and ground water in field conditions, International Biodeterioration and Biodegradation 44, 39–47.

    CAS  Google Scholar 

  67. Robinson, G.K. (1998) (Bio)remediation of polychlorinated biphenyls (PCBs): problems, perspectives and solutions, Biochem. Soc. Trans., 26, 686–690.

    CAS  Google Scholar 

  68. Providenti, M.A., Lee, H., and Trevors, J.T. (1993) Selected factors limiting the microbial degradation of recalcitrant compounds, J. Ind. Microbiol. 12, 379–395.

    CAS  Google Scholar 

  69. Fava, F. and Bertin, L. (1999) Use of exogenous specialised bacteria in the biological detoxification of a dump-site polychlorobiphenyl-contaminated soil in slurry-phase conditions, Biotechnol. Bioeng., 64, 240–249.

    CAS  Google Scholar 

  70. Fava, F., Di Gioia, D., and Marchetti, L. (2000) Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab slurry phase conditions, Appl. Microbiol. Biotechnol., 53, 243–248.

    CAS  Google Scholar 

  71. Verstraete, W. and Devliegher, W. (1996) Formation of non-bioavailable organic residues in soil: perspectives for site remediation. Biodegradation 7, 471–485

    CAS  Google Scholar 

  72. Volkering, F., Breure, A.M., and Rulkens, W.H. (1998) Microbiological aspects of surfactant use for biological soil remediation, Biodegradation 8, 401–417.

    CAS  Google Scholar 

  73. Rouse, J.D., Sabatini, D.A., Suflita, J.M. and Harwell, J.H. (1994) Influence of surfactant on microbial degradation of organic compounds, Crit. Rev. Environ. Sci. Technol, 24, 325–370.

    CAS  Google Scholar 

  74. Lajoie, C.A., Layton, A.C., Easter J.P., Menn, F.-M. and Sayler, G.S. (1997) Degradation of nonionic surfactants and polychlorinated biphenyls by recombinant field application vectors, J. Ind. Microbiol. Biotechnol. 19, 252–262.

    CAS  Google Scholar 

  75. Singer A.C., Gilbert, E.S., Luepromchai, E. and Crowley, D.E. (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria, Appl. Microbiol. Biotechnol. 54, 838–843.

    CAS  Google Scholar 

  76. Billingsley, K.A., Backus, S.M. and Ward, O.P. (1999) Effect of surfactant solubilization on biodegradation of polychlorinated biphenyl congeners by Pseudomonas LB400. Appl. Microbiol. Biotechnol. 52, 255–260.

    CAS  Google Scholar 

  77. Fiebig, R., Schulze, D., Chung, J.C. and Lee, S.T. (1997) Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bio-emulsifier produced on sunflower oil, Biodegradation 8, 67–75.

    CAS  Google Scholar 

  78. Fava, F. and Di Gioia, D. (2001) Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially-contaminated soil. Biotechnol. Bioeng. 72, 177–184.

    CAS  Google Scholar 

  79. Saenger, W. (1980) Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. Engl. 19, 344–362.

    Google Scholar 

  80. Frömming, K.-H. and Szejtli, J. (1994), in Frömming, K.-H. and Szejtli, J. (Eds.), Cyclodextrins in pharmacy, Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  81. Fava, F. and Grassi, F. (1996) Cyclodextrins enhance the aerobic degradation and dechlorination of low-chlorinated biphenyls, Biotechnol. Tech. 10, 291–296.

    CAS  Google Scholar 

  82. Soeder, C.J., Papaderos, A., Kleespies, M., Kneifel, H., Haegel, H., and Weeb, L. (1996) Influence of phytogenic surfactants (quillaya saponin and soya lecithin) on bio-elimination of phenanthrene and fluoranthene by three bacteria. Appl. Microbiol. Biotechnol. 44, 654–659.

    CAS  Google Scholar 

  83. Fava, F. (1996) The presence of glass beads or Triton X-100 in the medium enhances the aerobic dechlorination of Aroclor 1221 in Pseudomonas sp. CPE1 culture. Chemosphere 32, 1469–1475.

    CAS  Google Scholar 

  84. Viney, I., and Bewley, R.J. (1990) Preliminary studies on the development of a microbial treatment for polychlorinated biphenyls, Arch. Environ. Contam. Toxicol. 19, 789–796.

    CAS  Google Scholar 

  85. Cookson, J.T. (1995) in Cookson, J.T (Ed.), Bioremediation Engineering, Design and Application, McGraw-Hill Inc., NY.

    Google Scholar 

  86. Bedard, D.L., R.E. Wagner, M.J. Brennan, M.L. Haberl and J.F. Brown Jr. (1987) Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850, Appl. Environ. Microbiol. 53: 1094–1102

    CAS  Google Scholar 

  87. Butler, J.M., Groeger A.W. and Fletcher J.S (1992) Characterization of polychlorinated biphenyl products formed by plant cells, Bull Environ. Contam. Toxicol. 49: 821–826.

    CAS  Google Scholar 

  88. Fletcher, J.S., A.W. Groeger and James C. McFarlane (1987) Metabolism of 2-chlorobiphenyl by suspension cultures of Paul's Scarletrose, Bull. Environ. Contam. Toxicol 39, 960–965.

    CAS  Google Scholar 

  89. Fletcher, J.S. and R.S. Hegde. (1995), Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31, 3009–3016.

    CAS  Google Scholar 

  90. Fletcher, J.S., P.K. Donnelly and R.S. Hegde. (1995) Biostimulation of PCB-degrading bacteria by compounds released from plant roots. In Bioremediation of Recalcitrant Organics. Battelle Press, Columbus Ohio. pp. 131–136.

    Google Scholar 

  91. Groeger, A.G. and J.S. Fletcher (1988) The influence of chlorine content on the accumulation and metabolism of polychlorinated biphenyls (PCBs) by Paul's Scarlet Rose cells, Plant Cell Rep 7, 329–332.

    CAS  Google Scholar 

  92. Harkness, M.R., J.B. McDermott, D.A. Abramowicz, J.J. Salvo, W.P. Flanagan, M.L. Stephens, F.J. Mondello, RJ. May, J.H. Lobos, K.M. Carroll, M.J. Brennan, A.A. Bracco, K.M. Fish, G.L. Warner, P.R. Wilson, D.K. Dietrich, D.T. Lin, C.B. Morgan and W.L. Gately (1992) In situ stimulation of aerobic PCB biodegradation in Hudson River sediments, Science 259, 503–507.

    Google Scholar 

  93. Hegde, R.S and J.S. Fletcher. (1996). Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology, Chemosphere 32, 2471–2479.

    CAS  Google Scholar 

  94. Kucerova P (2001) Study of the metabolism of selected xenobiotics by plant cells. Dissertation Thesis, ICT Prague.

    Google Scholar 

  95. Leigh, M.B. (1997) The release of phenolic compounds into the soil by fine root turnover of mulberry (Moms rubra L.). MS Thesis, University of Oklahoma, Norman, OK.

    Google Scholar 

  96. Leigh, M.B., J.S. Fletcher, D.P. Nagle, M. Mackova and T. Macek. (2001). Phytoremediation and Wetlands for Remediation of Contaminated Areas. Battelle Press., Columbus, Ohio.

    Google Scholar 

  97. Lutz, Harold J. and Robert F. Chandler, Jr. (1947) Forest Soils. John Wiley and Sons, New York.

    Google Scholar 

  98. Macková, M..,T. Macek, L. Chromá, P. Kučerová, J. Burkhard, J. Tříska, N. Vrchotová, H. Nováková and K. Demnerová (2000) Bacterial PCB degradation induced by natural compounds of plant origin, Chemické Listy 8, 725.

    Google Scholar 

  99. H. Novák ová, J. Pazlarová, K. Demnerová, M. Macková a J. Burkhard (2002). Degradation of PCBs by indigenous bacterial strains, Acta Biotechnologica in press.

    Google Scholar 

  100. Olson, P.E. and J.S. Fletcher. (1999). Field evaluation of a mulberry tree growing on an industrial waste site with reference to its potential role in phytoremediation. Bioremed Journal 3, 27–33.

    Google Scholar 

  101. Olson, P.E. and J.S. Fletcher (2000) Ecological recovery of vegetation at a former PAH-contaminated industrial sludge basin and its implications to phytoremediation and ecological risk assessment, Environ Sci Poll Res 7, 95–204.

    Google Scholar 

  102. Olson, P.E. and J.S. Fletcher. 2000. Natural attenuation/phytoremediation in the vadose zone of a former industrial sludge basin. Environmental Science and Pollution Research. http://www.dx.doi.org/10.1065/espr2000.

  103. Alexander, M. (1994) Bioremediation and Biodegradation, Academic Press, San Diego, CA.

    Google Scholar 

  104. Dasappa, S.M., Loehr, R.C. (1991) Toxicity reduction in contaminated soil remediation processes, Wt Res 25, 1121–1130.

    CAS  Google Scholar 

  105. Gibson, D.T., Saylor, G.S. (1992) Scientific Foundation of Bioremediation: Current Status and Future Needs, American Academy of Microbiology, Washington, D.C.

    Google Scholar 

  106. Pavlu, L., Stuchlikova, K., Brenner, V. (2000) Biodegradation capacity of autochtonous microflora at a PAH-contaminated site in O. Halouskova (ed.) Proceedings of the Symposium Bioremediation IV, March 8-9, Sec, Vodni Zdroje Ekomonitor, ISBN 80-7080-374-6, pp. 8.

    Google Scholar 

  107. Zrotalova, K., Cajthaml, T., Demnerova, K., Sasek, V. (2000) Possibilities for biodegradation of polyaromatic hydrocarbons in biological suspension system in O. Halouskova (ed.) Proceedings of the Symposium Bioremediation IV, March 8-9, Sec, Vodni Zdroje Ekomonitor, ISBN 80-7080-374-6, p. 144.

    Google Scholar 

  108. Siglova, M.,. Masak, J., Cejkova, A., Jirku, V., Kotrba, D. (2000) Stimulation of adhesion of single cell organisms capable to degrade toxic compounds in O. Halouskova (ed.), Proceedings of the Symposium Bioremediation IV, March 8-9, Sec, Vodni Zdroje Ekomonitor, ISBN 80-7080-374-6, p. 137.

    Google Scholar 

  109. Sykora, V., Pitter, P. (2000) Biodegradability of ethyleneamine derivatives in O. Halouskova (ed.) Proceedings of the Symposium Bioremediation IV, March 8-9, Sec, Vodni Zdroje Ekomonitor, ISBN 80-7080-374-6, p. 144.

    Google Scholar 

  110. Jasenska, A., Sedladek, I., Damborsky, J. (2000) Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria, Appl Environ Microbiol 66, 219–222.

    Google Scholar 

  111. Damborsky, J., Kuty, M., Nemec, M., Koca, J. (1997) A molecular modelling study of the catalytic mechanism of haloalkane dehalogenase: I. quantum chemical study of the first reaction step, J Chem Inf Comp Sci 37, 562–568.

    CAS  Google Scholar 

  112. Damborsky, J., Bohac, M., Prokop, M., Kuty, M., Koca, J. (1998) Computational site-directed mutagenesis of haloalkane dehalogenase in position 172, Prot. Eng. 11, 901–907.

    CAS  Google Scholar 

  113. Damborsky, J., Jesenska, J., Hynkova, K., Kmunicek, J., Bohac, M., Kuta-Smatanova, I., Marek, J., Koca, J. (2000) Screening and construction of biocatalysts in O. Halouskova (ed.) Proceedings of the Symposium Bioremediation IV, March 8-9, Sec, Vodni Zdroje Ekomonitor, ISBN 80-7080-374-6, p. 14–18.

    Google Scholar 

  114. Ruzicka, J. (1993) Decontamination of former Soviet military bases in the Czech Republic, Planeta 1(8), 23–24.

    Google Scholar 

  115. Svoma, J. (1993) Decontamination of Soviet military bases, Planeta, 1(9), 25–28.

    Google Scholar 

  116. Thacker, B.K., Ford, C.G. (1999): In situ bioremediation technique for sites underlain by silt and clay, J. Environ. Engin., ASCE 125(12), 1169–1172.

    Google Scholar 

  117. Robertiella, A., Lucchese, G., Leo, C. di, Boni, R., Carren, P. (1994) In situ bioremediation of a gasoline and diesel fuel contaminated site with integrated laboratory simulation experiments in Hinchee, R.E., Alleman, B.C., Hoeppel, R.E., Miller, R.N. (eds.), Hydrocarbon Bioremediation, Lewis Publishers, Boca Raton, CA, pp. 133–139.

    Google Scholar 

  118. Malachova, K. (1999) Using short-term mutagenicity tests for the evaluation of genotoxicity of contaminated soils, J. Soil Contam. 8(6), 667–680.

    CAS  Google Scholar 

  119. Malachova, K., Lednicka, D., Dobias, L. (1998) Bacterial assays of mutagenicity in estimating the effectivness of biological decontamination of soils, Biologia (Bratislava) 53(6), 699–704.

    CAS  Google Scholar 

  120. Mateju, V., Kyclt, R. (2000): Natural biological attenuation of chlorinated hydrocarbons, Screening and construction of biocatalysts in O. Halouskova (ed.) Proceedings of the Symposium Bioremediation IV, March 8-9, Sec, Vodni Zdroje Ekomonitor, ISBN 80-7080-374-6, p. 65–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Demnerová, K. et al. (2002). PCB — Approaches to Removal From the Environment. In: Reible, D., Demnerova, K. (eds) Innovative Approaches to the On-Site Assessment and Remediation of Contaminated Sites. NATO Science Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0255-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0255-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0957-0

  • Online ISBN: 978-94-010-0255-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics