Advertisement

Small Radio Telescopes

  • Michael W. Castelaz
  • J. Donald Cline
  • Charles Osborne
  • David A. Moffett
Part of the Astrophysics and Space Science Library book series (ASSL, volume 287/8/9)

Abstract

Single antenna small radio telescopes, 30-m diameter and smaller, are often overshadowed by the few large dishes and multiple antennae arrays. Contemporary emphasis in radio astronomy is the construction of large antennae and multiple antennae arrays. Of course, the obvious reasons include greater flux sensitivity and improvement of spatial resolution. However, the relative youth of radio astronomy suggests that the usefulness of small radio telescopes have not yet been fully explored.

In this chapter several key challenges of observational and astrophysical interest are made to small radio telescope astronomers. The challenges include improvement in receiver technology, monitoring brown dwarfs, masers, and gamma ray bursts, surveys using low density interstellar medium indicator molecules, water maser surveys, and pulsar research. Also, as important as the astrophysics, is the continued education of future radio astronomers, and general public outreach. Hopefully, this chapter will inspire ideas for discovery using small radio telescopes.

Key words

radio astronomy radio telescopes antennae receivers brown dwarfs masers pulsars interstellar medium science education 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baade, W., and Zwicky, F. 1934, Proc. Nat. Acad. Sci., 20, 254ADSCrossRefGoogle Scholar
  2. Backer, D. C., Wong, T., and Valanju. J. 2000, Astrophysical Journal, 543, 740, “A Plasma Prism Model for an Anomalous Dispersion Event in the Crab Pulsar”ADSCrossRefGoogle Scholar
  3. Blasano, R. J. 1999, PhD Thesis. Princeton. “A Search for Radio Emission Coincident with Gamma-Ray Bursts”Google Scholar
  4. Berger, E., Ball, S., Becker, K. M., Clarke, M., Frail, D. A, Fukuda, T. A, Hoffman, I. M., Mellon, R, Momjian, E., Murphy, N. W., Teng, S. H, Woodruff, T., Zauderer, B. A, and Zavala, R. T. 2001a, Nature, 410, 338–340, “Discovery of Radio Emission from the Brown Dwarf LP944-20”ADSCrossRefGoogle Scholar
  5. Berger, E., Ball, S., Becker, K. M, Clarke, M., Frail, D. A, Fukuda, T. A, Hoffman, I. M., Mellon, R, Momjian, E., Murphy, N. W., Teng, S. H., Woodruff, T., Zauderer, B. A, and Zavala, R T. 2001b, AAS, 198.6906, “Discovery of Radio Emission from the Brown Dwarf LP944-20 and Preliminary Results from an Ongoing Survey of Nearby Brown Dwarfs with the VLA”ADSGoogle Scholar
  6. Burke, B.F. & Graham-Smith, F. 2002, Cambridge University Press, “An Introduction to Radio Astronomy,” 2nd edition.Google Scholar
  7. Cosmovici, C., Pogrebenko, S., & Montebugrtoli, S. 1999, Bioastronomy 99: A New Era in Bioastronomy. 6th Bioastronomy Meeting-Kohala Coast Hawaii-August 2–6, 1999. “The 22 GHz Water MASER Line: A New Diagnostic Tool For Extrasolar Planet Search”Google Scholar
  8. Dodson, R. G., McCulloch, P. M., and Costa, M. E. 2000, IAU Circular 7347, “PSR 0833-45”Google Scholar
  9. Hewish, A, Bell, S. J., Pilkington, J. D. H., Scott, P. F., Collins, R. A. 1968, Nature 217, 709ADSCrossRefGoogle Scholar
  10. Hey, J.S. 1973, Neale Watson Academic Publications, Inc. NY, “The Evolution of Radio Astronomy.”Google Scholar
  11. Levin, D. A 1995, PhD Thesis. UCLA. “A Survey of 22 Gigahertz Water Masers Within 2.25 Degrees of the Galactic Center”Google Scholar
  12. Luttermoser, D. G. 2000, ApJ, 536, 923,“The Atmosphere of Mira Variables: A View with the Hubble Space Telescope”ADSCrossRefGoogle Scholar
  13. MacLeod, G. C. & Gaylard, M. J. 1996, MNRAS, 280, 868. “Variable Hydroxyl and Methanol Masers in G 351.78-0.54”ADSCrossRefGoogle Scholar
  14. Magnani, L.; Engebreth, B.; Hartmann, D.; Dame, T. M. 2000, Imaging at Radio through Submillimeter Wavelengths. Edited by Jeff Mangum. Publisher: The Astronomical Society of the Pacific, Conference Series, 2000. The conference was held June 6ߝ8, 1999, in Tucson, Arizona “Imaging the Galactic Center in CH: A Comparison with CO”Google Scholar
  15. Melrose, D. B. 1995, Journal of Astrophysics and Astronomy, 16, 137, “The Models for Radio Emission from Pulsars-the Outstanding Issues”ADSCrossRefGoogle Scholar
  16. Prochter, G. E. & Braatz, J. A. 2000, AAS, 197.4003, “Rapid Flux Variability of Galactic and Extragalactic Water Masers”Google Scholar
  17. Ruderman, M. A, and Sutherland, P. G. 1975. Astrophysical Journal, 196, 51, “Theory of Pulsars-Polar Caps, Sparks, and Coherent Microwave Radiation”ADSCrossRefGoogle Scholar
  18. Rudnitskij, G. M., Lekhet, E. E., Mendoza-Torres, J. E., Paqshchenko, M. I., & Berulis, I. I. 2000, A&AS, 146, 385. “Variability of the Water Maser Associated with U Orionis”ADSCrossRefGoogle Scholar
  19. Seaton & Partridge 2001, PASP, 113, 6–9. “Possible Radio Afterglow of a 1989 Gamma-Ray Burst”ADSCrossRefGoogle Scholar
  20. Staelin, D. H, and Reifenstein III, E. C. 1968, Science, 162, 1481ADSCrossRefGoogle Scholar
  21. Stinebring, D.R., Smirnova, T.V., Hankins, T. H., Hovis, J. S., Kaspi, V. M, Kempner, J. C., Myers, E.; Nice, D. J. 2000, ApJ, 539, 300. “Five Years of Pulsar Flux Density Monitoring: Refractive Scintillation and the Interstellar Medium”ADSCrossRefGoogle Scholar
  22. Takaba, H., Iwate, T., Miyaji, T., Deguchi, S. 2001 PASJ, 53, 517. “Kashima 34-m Water Maser Survey of Late-Type Stars”ADSGoogle Scholar
  23. Usov V. & Katz, J. I. 2000, A&A, 364, 655. “Low Frequency Radio Pulses from GammaRay Bursts” Zhou, J & Zheng, X. 2001, Ap&SS, 275, 431, “Short Time Variability of the Water Masers in W51M”ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Michael W. Castelaz
    • 1
  • J. Donald Cline
    • 1
  • Charles Osborne
    • 1
  • David A. Moffett
    • 2
  1. 1.Pisgah Astronomical Research InstituteRosmanUSA
  2. 2.Furman UniversityGreenvilleUSA

Personalised recommendations