Functional divergence in protein (family) sequence evolution

Part of the Contemporary Issues in Genetics and Evolution book series (CIGE, volume 10)


As widely used today to infer ‘:function’, the homology search is based on the neutral theory that sites of greatest functional significance are under the strongest selective constraints as well as lowest evolutionary rates, and vice versa. Therefore, site-specific rate changes (or altered selective constraints) are related to functional divergence during protein (family) evolution. In this paper, we review our recent work about this issue. We show a great deal of functional information can be obtained from the evolutionary perspective, which can in turn be used to facilitate high throughput functional assays. The emergence of evolutionary functional genomics is also indicated. The related software DIVERGE can be obtained form

Key words

functional divergence gene duplication sequence evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Casari, G., C. Sander & A. Valencia, 1995. A method to predict functional residues in proteins. Nat. Struct. Biol. 2: 171–178.PubMedCrossRefGoogle Scholar
  2. Clark, A.G., 1994. Invasion and maintenance of a gene duplication. Proc. Natl. Acad. Sci. USA 91: 2950–2954.PubMedCrossRefGoogle Scholar
  3. Dermitzakis, E.T. & A.G. Clark, 2001. Differential selection after duplication in mammalian developmental genes. Mol. Biol. Evol. 18: 557–562.PubMedCrossRefGoogle Scholar
  4. Fitch, W.M. & E. Markowitz, 1970. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4: 579–593.PubMedCrossRefGoogle Scholar
  5. Force, A., M. Lynch, F.B. Pickett, A. Amores, Y.L. Yan & J. Postlethwait, 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545.PubMedGoogle Scholar
  6. Fryxell, K.J., 1996. The coevolution of gene family trees. Trends Genet. 12: 364–369.PubMedCrossRefGoogle Scholar
  7. Gaucher, E.A., M.M. Miyamoto & S.A. Benner, 2001. Function-structure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. PNAS 98: 548–552.PubMedCrossRefGoogle Scholar
  8. Golding, G.B. & A.M. Dean, 1998. The structural basis of molecular adaptation. Mol. Biol. Evol. 15: 355–369.PubMedCrossRefGoogle Scholar
  9. Gu, X., 1999. Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol. 16: 1664–1674.PubMedCrossRefGoogle Scholar
  10. Gu, X., 2001. Maximum-likelihood approach for gene family evolution under functional divergence. Mol. Biol. Evol. 18: 453–464.PubMedCrossRefGoogle Scholar
  11. Gu, X. & K. Vander Velden, 2002. DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics (in press).Google Scholar
  12. Gu, J., Y. Wang & X. Gu, 2002. Evolutionary analysis for functional divergence of Jak protein kinase domains and tissue-specific genes. J. Mol. Evol. (in press).Google Scholar
  13. Hughes, A.L., 1994. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B Biol. Sci. 256: 119–124.CrossRefGoogle Scholar
  14. Jordan, K., G.R. Bishop & D.S. Gonzalez, 2001. Sequence and structural aspects of functional diversification in class I-mannosidase evolution. Bioinformatics 17: 965–976.PubMedCrossRefGoogle Scholar
  15. Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  16. Knudsen, B. & M. Miyamoto, 2001. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins. PNAS 98: 14512–14517.PubMedCrossRefGoogle Scholar
  17. Landgraf, R., D. Fischer & D. Eisenberg, 1999. Analysis of heregulin symmetry by weighted evolutionary tracing. Protein Eng. 12:943–951.PubMedCrossRefGoogle Scholar
  18. Li, W.H., 1983. pp. 14–37 in Evolution of Genes and Proteins, M. Nei & R.K. Keohn. Sinauer Associates, Sunderland, MA.Google Scholar
  19. Lichtarge, O., H.R. Bourne & R.E. Cohen, 1996. An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257: 342–358.PubMedCrossRefGoogle Scholar
  20. Livingstone, C.D. & G.J. Barton, 1996. Identification of functional residues and secondary structure from protein multiple sequence alignment. Meth. Enzymol. 266: 497–512.PubMedCrossRefGoogle Scholar
  21. Lockhart, P.J., M.A. Steel, A.C. Barbrook, D.H. Huson, M.A. Charleston & C.J. Howe, 1998. A covariotide model explains apparent phylogenetic structure of oxygenic photosynthetic lineages. Mol. Biol. Evol. 15: 1183–1188.PubMedCrossRefGoogle Scholar
  22. Lopez, P., P. Forterre & H. Philippe, 1999. The root of the tree of life in the light of the covarion model. J. Mol. Evol. 49: 496–508.PubMedCrossRefGoogle Scholar
  23. Miyamoto, M.M. & W.M. Fitch, 1995. Testing the covarion hypothesis of molecular evolution. Mol. Biol. Evol. 12: 503–513.PubMedGoogle Scholar
  24. Naylor, G.J. & M. Gerstein, 2000. Measuring shifts in function and evolutionary opportunity using variability profiles: a case study of the globins. J. Mol. Evol. 51: 223–233.PubMedGoogle Scholar
  25. Nei, M., X. Gu & T. Sitnikova, 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. PNAS 94: 7799–7806.PubMedCrossRefGoogle Scholar
  26. Ohno, S., 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin.Google Scholar
  27. Pollock, D., W.R. Taylor & N. Goldman, 1999. Coevolving protein residues: maximum likelihood identification and relationship to structure. J. Mol. Biol. 287: 187–198.PubMedCrossRefGoogle Scholar
  28. Rotonda, J., D.W. Nicholson, K.M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E.P. Peterson, D.M. Rasper, R. Ruel, J.P. Vaillancourt, N.A. Thornberry & J.W. Becker, 1996. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat. Struct. Biol. 7:619–625.CrossRefGoogle Scholar
  29. Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  30. Suzuki, Y. & T. Gojobori, 1999. A method for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 16: 1315–1328.PubMedCrossRefGoogle Scholar
  31. Tsunoyama, K. & T. Gojobori, 1998. Evolution of nicotinic acetylcholine receptor subunits. Mol. Biol. Evol. 15: 518–527.PubMedCrossRefGoogle Scholar
  32. Wang, Y. & X. Gu, 2000. Evolutionary patterns of gene families generated in the early stage of vertebrates. J. Mol. Evol. 51: 88–96.PubMedGoogle Scholar
  33. Wang, Y & X. Gu, 2001. Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics 158: 1311–1320.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Xun Gu
    • 1
  1. 1.Department of Zoology and Genetics, LHB Center for Bioinformatics and Biological StatisticsIowa State UniversityAmesUSA

Personalised recommendations