Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 106))

  • 183 Accesses

Abstract

We analyze the normal phase of the attractive Hubbard model within a dynamical meanfield theory. The normal phase can be stabilized even below the critical temperature for superconductivity by a sufficiently strong magnetic field. At weak coupling the low-temperature behavior of all quantities is consistent with Fermi liquid theory. At strong coupling all electrons are bound in pairs, which leads to a spin gap and removes fermionic quasi-particle excitations. The transition between the Fermi liquid phase and the pair phase takes place at a critical coupling of the order of the band-width and is generally discontinuous at sufficiently low temperature. It is equivalent to the Mott transition in the half-filled spin-polarized repulsive Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, edited by A. Pekalski and J. Przystawa (Springer, Berlin 1980).

    Google Scholar 

  2. P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  ADS  Google Scholar 

  3. For a review on the BCS to Bose crossover, see M. Randeria in Bose-Einstein Condensation, edited by A. Griffin, D. Snoke and S. Stringari (Cambridge University Press, 1995).

    Google Scholar 

  4. For an early review of the attractive Hubbard model, see R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).

    Article  ADS  Google Scholar 

  5. M. Randeria, N. Trivedi, A. Moreo, and R. T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992)

    Article  ADS  Google Scholar 

  6. N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995).

    Article  ADS  Google Scholar 

  7. J. M. Singer, M. H. Pedersen, T. Schneider, H. Beck, and H.-G. Matuttis, Phys. Rev. B 54, 1286 (1996).

    Article  ADS  Google Scholar 

  8. R. R. dos Santos, Phys. Rev. B 50, 635 (1994).

    Article  ADS  Google Scholar 

  9. S. Allen and A.-M.S. Tremblay, Phys. Rev. B 64, 075115 (2001).

    Article  ADS  Google Scholar 

  10. B. Kyung, S. Allen, and A.-M. S. Tremblay, Phys. Rev. B 64, 075116 (2001).

    Article  ADS  Google Scholar 

  11. For a review on pseuodogap behavior, see M. Randeria in Proceedings of the International School of Physics “Enrico Fermi”, edited by G. Iadonisi, J. R. Schrieffer and M. L. Chiofalo (IOS Press, Amsterdam, 1998); for a more recent discussion, see also Ref. [9].

    Google Scholar 

  12. For a review of DMFT, see A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  13. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  14. M. Keller, W. Metzner, and U. Schollwöck, Phys. Rev. Lett. 86, 4612 (2001); J. Low Temp. Phys. 126, 961 (2002).

    Article  ADS  Google Scholar 

  15. M. Capone, C. Castellani, and M. Grilli, condmat/0109194.

    Google Scholar 

  16. The hard core Bose gas can be mapped to an antiferromagnetic Heisenberg model in an external magnetic field, and its mean-field theory maps to the standard mean-field theory of the Heisenberg model; see, for example Ref. [4], Sec. IIB.

    Google Scholar 

  17. J.E. Hirsch and R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986).

    Article  ADS  Google Scholar 

  18. J.K. Freericks, M. Jarrell, and DJ. Scalapino, Phys. Rev. B 48, 6302 (1993).

    Article  ADS  Google Scholar 

  19. M. Keller, U. Schollwöck, and W. Metzner, Phys. Rev. B 60, 3499 (1999).

    Article  ADS  Google Scholar 

  20. See the analogous argument for the half-filled repulsive Hubbard model in Ref. [11], Sec. VII.C.

    Google Scholar 

  21. L. Laloux, A. Georges, and W. Krauth, Phys. Rev. B 50, 3092 (1994).

    Article  ADS  Google Scholar 

  22. M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).

    Article  ADS  Google Scholar 

  23. D. Rohe and W. Metzner, Phys. Rev. B 63, 224509 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keller, M., Metzner, W., Schollwöck, U. (2003). Pairing Transition in a Normal Fermi System with Attractive Interactions. In: Vagner, I.D., Wyder, P., Maniv, T. (eds) Recent Trends in Theory of Physical Phenomena in High Magnetic Fields. NATO Science Series, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0221-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0221-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1373-7

  • Online ISBN: 978-94-010-0221-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics