Skip to main content

Synchrony in Globally Coupled Chaotic, Periodic, and Mixed Ensembles of Dynamical Units

  • Chapter
Synchronization: Theory and Application

Part of the book series: NATO Science Series ((NAII,volume 109))

  • 298 Accesses

Abstract

The onset of collective synchronous behavior in globally coupled ensembles of oscillators is discussed. We present a formalism that is applicable to general ensembles of heterogeneous, continuous time dynamical units that, when uncoupled, are chaotic, periodic, or a mixture of both. A discussion of convergence issues, important for the proper implementation of our method, is included. Our work leads to a quantitative prediction for the critical coupling value at the onset of collective synchrony and for the growth rate of the resulting coherent state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975); Chemical Oscillators, Waves and Turbulence (Springer, Berlin, 1984); A. T. Winfree, The Geometry of Biological Time (Springer, New York, 1980); for a review of work on the Kuramoto model, see S. H. Strogatz, Physica D 143, 1 (2000).

    Google Scholar 

  2. T. J. Walker, Science 166, 891 (1969).

    Article  ADS  Google Scholar 

  3. J. Buck, Q. Rev. Biol. 63, 265 (1988).

    Article  Google Scholar 

  4. K. Wiesenfeld, P. Colet and S. H. Strogatz, Phys. Rev. Lett. 76, 404 (1996).

    Article  ADS  Google Scholar 

  5. D. V. Ramana Reddy, A. Sen and G. L. Johnston, Phys. Rev. Lett. 80, 5109 (1998).

    Article  ADS  Google Scholar 

  6. C. S. Peskin, Mathematical Aspects of Heart Physiology (Courant Institute of Mathematical Sciences, New York, 1975).

    MATH  Google Scholar 

  7. A. S. Pikovsky, M. G. Rosenblum and J. Kurths, Europhys. Lett. 34, 165 (1996).

    Article  ADS  Google Scholar 

  8. H. Sakaguchi, Phys. Rev. E 61, 7212 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Topaj, W.-H. Kye and A. Pikovsky, Phys. Rev. Lett. 87, 074101 (2001).

    Article  ADS  Google Scholar 

  10. I. Kiss, Y. Zhai and J.L. Hudson, Phys. Rev. Lett. 88, 238301 (2002).

    Article  ADS  Google Scholar 

  11. E. Ott, P. So, E. Barreto, and T.M. Antonsen, nlin.CD/0205018.

    Google Scholar 

  12. E. Ott, Chaos in Dynamical Systems (Cambridge Univ. Press, 1993), Chapter 3. For a given Ω, the natural measure μΩ for an attractor A of the uncoupled system dx/dt = G(x, Ω) gives the fraction of time μΩ(S) that a typical infinitely long orbit originating in B(A) (the basin of attraction of A) spends in a subset S of state space. By the word typical we refer to the supposition that there is a set of initial conditions x(0) in B(A) where this set has Lebesgue measure (roughly volume) equal to the Lebesgue measure of B(A) and such that each initial condition in this set gives the same value (i.e., the natural measure) for the fraction of time spent in S by the resulting orbit.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ott, E., So, P., Barreto, E., Antonsen, T. (2003). Synchrony in Globally Coupled Chaotic, Periodic, and Mixed Ensembles of Dynamical Units. In: Pikovsky, A., Maistrenko, Y. (eds) Synchronization: Theory and Application. NATO Science Series, vol 109. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0217-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0217-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1417-8

  • Online ISBN: 978-94-010-0217-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics