Skip to main content

Geometrical Interpretation of Multibody Dynamics: Theory and Implementations

  • Chapter
Virtual Nonlinear Multibody Systems

Part of the book series: NATO ASI Series ((NAII,volume 103))

  • 614 Accesses

Abstract

A unified geometrical interpretation of multibody dynamics codes is presented. The geometrical picture is built using the concepts of configuration manifolds, linear vector spaces, and projection techniques. The presented projection method leads to compact schemes for obtaining different types of equations of motion and for determination of constraint reactions, relevant to open-loop and closed-loop, and for holonomic and nonholonomic systems. The other useful implementations stimulated by the geometrical interpretation are improved schemes for constraint violation elimination, a novel approach to efficient determination of constraint reactions, a geometric interpretation of the augmented Lagrangian formulation, and an orthonormalization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayo, E. and Ledesma R. (1996) Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamicsNonlinear Dynamics9, 113–130.

    Article  MathSciNet  Google Scholar 

  2. Blajer W. (1995) An effective solver for absolute variable formulation of multibody dynamicsComputational Mechanics15, 460–472.

    Article  MATH  Google Scholar 

  3. Blajer, W. (1997) A geometric unification of constrained system dynamicsMultibody System Dynamics1, 3–21.

    Article  MathSciNet  MATH  Google Scholar 

  4. Blajer, W. (2001) A geometrical interpretation and uniform matrix formulation of multi-body system dynamics, ZAMM 81, 247–259.

    Article  MathSciNet  MATH  Google Scholar 

  5. Blajer, W. (2002) Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systemsMultibody System Dynamics7, 265–284.

    Article  MathSciNet  MATH  Google Scholar 

  6. Blajer, W. (in press) Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancyMultibody System Dynamics.

    Google Scholar 

  7. Blajer, W. and Schiehlen, W. (submitted) Efficient determination of constraint reactions in multibody systems”,Multibody System Dynamics.

    Google Scholar 

  8. Blajer, W., Schiehlen, W., and Schirm, W. (1994) A projective criterion to the coordinate partitioning method for multibody dynamicsArchive of Applied Mechanics64, 86–98.

    MATH  Google Scholar 

  9. Desloge, E.A. (1988) The Gibbs-Appell equations of motionAmerican Journal of Physics56,841–846.

    Article  MathSciNet  Google Scholar 

  10. Djerassi, S. (1997) Determination of noncontributing forces and noncontributing impulses in three-phase motionsJournal of Applied Mechanics64, 582–589.

    Article  MATH  Google Scholar 

  11. Essén, H. (1994) On the geometry of nonholonomic dynamicsJournal of Applied Mechanics61, 689–694.

    Article  MATH  Google Scholar 

  12. Garcia de Jalón, J. and Bayo, E. (1994)Kinematic and Dynamic Simulation of Multibody Systems: the Real-Time ChallengeSpringer-Verlag, New York.

    Book  Google Scholar 

  13. Jungnickel, U. (1994) Differential-algebraic equations in Riemannian spaces and applications to multibody system dynamics, ZAMM74, 409–415.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kane, T.R. and Levinson, D.A. (1985)Dynamics: Theory and ApplicationsMcGraw-Hill, New York.

    Google Scholar 

  15. Lesser, M. (1992) A geometrical interpretation of Kane’s equationsProceedings of the Royal Society in LondonA436, 69–87.

    Article  MathSciNet  Google Scholar 

  16. Maißer, P. (1991) Analytical dynamics of multibody systemsComputer Methods in Applied Mechanics and Engineering91, 1391–1396.

    Article  MathSciNet  Google Scholar 

  17. Nikravesh, P.E. (1988)Computer-Aided Analysis of Mechanical SystemsPrince-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  18. Schiehlen, W. (1997) Multibody system dynamics: roots and perspectivesMultibody System Dynamics1, 149–188.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wehage, R.A. and Haug, E.J.(1982) Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systemsJournal of Mechanical Design104, 247–255.

    Article  Google Scholar 

  20. Yoon, S., Howe, R.M., and Greenwood, D.T. (1994) Geometric elimination of constraint violations in numerical simulation of Lagrangian equationsJournal of Mechanical Design116,1058–1064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blajer, W. (2003). Geometrical Interpretation of Multibody Dynamics: Theory and Implementations. In: Schiehlen, W., Valášek, M. (eds) Virtual Nonlinear Multibody Systems. NATO ASI Series, vol 103. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0203-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0203-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1340-9

  • Online ISBN: 978-94-010-0203-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics