Skip to main content

Linear and Nonlinear Diffusion Approximation of the Slow Motion in Systems with Two Time Scales

  • Conference paper
IUTAM Symposium on Nonlinear Stochastic Dynamics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 110))

Abstract

For a dynamical system with slow and fast variables the popular method of averaging enables one to derive an equation for the slow variables alone whose solution approximates the original slow motion on a finite time interval.

If the fast variables are sufficiently “random” the error term in the averaging procedure is described by a central limit theorem, i.e., the scaled error is Gaussian in the weak limit and satisfies a linear SDE (linear diffusion, or Gaussian approximation).

We will present an approximation of the slow motion by the solution of a nonlinear SDE (in meteorology known as Hasselmann’s equation) which was recently proved by Yuri Kifer. Although this nonlinear diffusion approximation holds in general, as the previous one’s, only on a finite time interval, it is at least in principle capable of correctly describing important long-term qualitative features of the slow motion.

We present several examples which support the usefulness of the nonlinear diffusion approximation, including the Lorenz-Maas model from climatology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arnold, Random dynamical systems. Springer-Verlag, Berlin Heidelberg New York, 1998.

    MATH  Google Scholar 

  2. L. Arnold, Hasselmann’s program revisited: the analysis of stochasticity in deterministic climate models. In P. Imkeller and J.-S. von Storch, editors, Stochastic Climate Models, volume 49 of Progress in Probability, pp. 141–157, Birkhäuser, Boston Basel Stuttgart, 2001.

    Google Scholar 

  3. L. Arnold, P. Imkeller, and Y. Wu, Reduction of deterministic coupled atmosphere-ocean models to stochastic ocean models: A numerical case study of the Lorenz-Maas system, Report, Institut für Dynamische Systeme, Universität Bremen, 2002.

    Google Scholar 

  4. I. Berkes and W. Philipp, “Approximation theorems for independent and weakly dependent random vectors,” Ann. Probab, vol. 7, pp. 29–54, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Bogolyubov and Y. Mitropolskii, Asymptotic methods in the theory of nonlinear oscillations, Gordon and Breach, NY, 1961.

    Google Scholar 

  6. H. Crauel and F. Flandoli, “Additive noise destroys a pitchfork bifurcation,” Journal of Dynamics and Differential Equations, vol. 10, pp. 259–274, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Dudley, “Distances of probability measure and random variables,” Ann. Math. Statist., vol. 39, pp. 1563–1572, 1968.

    MathSciNet  MATH  Google Scholar 

  8. M. Freidlin, “The averaging principle and theorems on large deviations,” Russian Math. Surveys, vol. 33, pp. 117–176, 1978.

    Article  Google Scholar 

  9. M. Freidlin and A. Wentzell, Random perturbations of dynamical systems. Springer-Verlag, Berlin, Heidelberg, New York, 1998. Second edition.

    Book  MATH  Google Scholar 

  10. K. Hasselmann, “Stochastic climate models: Part I. Theory,” Tellus, vol. 28, pp. 473–485, 1976.

    Article  Google Scholar 

  11. I. A. Ibragimov and Y. V. Linnik, Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  12. P. Imkeller and A. Monahan, editors. Stochastic Climate Models, volume 2 of Stochastics and Dynamics, World Scientific, Singapore, 2002. Special Issue.

    Google Scholar 

  13. P. Imkeller and J.-S. von Storch, editors. Stochastic Climate Models, volume 49 of Progress in Probability, Birkhäuser, Boston Basel Stuttgart, 2001.

    Google Scholar 

  14. W. Just, H. Kantz, C. Rödenbeck, and M. Helm, “Stochastic modelling: replacing fast degrees of freedom by noise,” J Phys. A: Math. Gen., vol. 34, pp. 3199–3213, 2001.

    Article  MATH  Google Scholar 

  15. H. Kantz, W. Just, and N. Baba, “Replacing fast chaotic degrees of freedom by noise: a formally exact result,” Preprint, 2002.

    Google Scholar 

  16. R. Z. Khasminskii, “A limit theorem for solutions of differential equations with random right-hand side,” Theory of Probability and its Applications, vol. 11, pp. 390–406, 1966.

    Article  Google Scholar 

  17. R. Z. Khasminskii, “On stochastic processes defined by differential equations with a small parameter,” Theory of Probability and its Applications, vol. 11, pp. 211–228, 1966.

    Article  Google Scholar 

  18. R. Z. Khasminskii, “On the principle of averaging for Itô stochastic differential equations,” (in Russian). Kybernetika, vol. 4, pp. 260–279, 1968.

    MathSciNet  Google Scholar 

  19. Y. Kifer, “Large deviations in dynamical systems and stochastic processes,” Trans. Amer. Math. Soc, vol. 321, pp. 505–524, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Kifer, “Averaging in dynamical systems and large deviations,” Invent, math., vol. 110, pp. 337–370, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y Kifer, “Limit theorems in averaging for dynamical systems,” Ergodic Theory and Dynamical Systems, vol. 15, pp. 1143–1172, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Kifer, Averaging and climate models. In P. Imkeller and J.-S. von Storch, editors, Stochastic Climate Models, volume 49 of Progress in Probability, pages 171–188, Birkhäuser, Boston Basel Stuttgart, 2001.

    Google Scholar 

  23. Y Kifer, L 2 diffusion approximation for slow motion in averaging. Preprint, Institute of Mathematics, Hebrew University, 2002.

    Google Scholar 

  24. J. Kuelbs and W. Philipp, “Almost sure invariance principles for partial sums of mixing B-valued random variables,” Ann. Probab., vol. 8, pp. 1003–1036, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Liptser and A. Shiryayev, Theory of martingales, Kluwer, Dordrecht, 1989.

    Book  MATH  Google Scholar 

  26. E. Lorenz, “Irregularity: a fundamental property of the atmosphere,” Tellus, vol. 36A, pp. 98–110, 1984.

    Article  MathSciNet  Google Scholar 

  27. L. Maas, “A simple model for the three-dimensional, thermally and wind-driven ocean circulation,” Tellus, vol. 46A, pp. 671–680, 1994.

    Google Scholar 

  28. A. Majda, I. Timofeyev, and E. Vanden-Eijnden, “A mathematical framework for stochastic climate models,” Communications on Pure and Applied Mathematics, vol. 54, pp. 891–974, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Majda, I. Timofeyev, and E. Vanden-Eijnden, A priori tests of a stochastic mode reduction strategy, preprint, Courant Institute of Mathematical Sciences, New York University, 2002.

    Google Scholar 

  30. G. Papanicolaou, D. Stroock, and S. R. S. Varadhan. Martingale approach to some limit theorems. Duke University Mathematics Series III, 1977.

    Google Scholar 

  31. W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161, 1975.

    Google Scholar 

  32. Y. A. Rozanov, Stationary random processes, Holden-Day, San Francisco, 1967.

    MATH  Google Scholar 

  33. J. A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, Springer-Verlag, Berlin, Heidelberg, New York, 1985.

    MATH  Google Scholar 

  34. V. Strassen, “The existence of probability measures with given marginals,” Ann. Math. Statist., vol. 36, pp. 423–439, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. van Veen, The Maas-Lorenz model. Manuscript, Department of Mathematics, Universiteit Utrecht, 2001.

    Google Scholar 

  36. L. van Veen, Time scale interaction in low-order climate models, PhD thesis, Department of Mathematics, Universiteit Utrecht, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Arnold, L. (2003). Linear and Nonlinear Diffusion Approximation of the Slow Motion in Systems with Two Time Scales. In: Namachchivaya, N.S., Lin, Y.K. (eds) IUTAM Symposium on Nonlinear Stochastic Dynamics. Solid Mechanics and Its Applications, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0179-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0179-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3985-7

  • Online ISBN: 978-94-010-0179-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics