Advertisement

Histograms and All That

  • W. Janke
Chapter
Part of the NATO Science Series book series (NAII, volume 114)

Abstract

In this lecture we first discuss “static” single- and multiple-histogram reweighting methods and then move on to “dynamic” updating methodologies related to histogramming. Specifically we will consider the multicanonical approach and tempering methods. The methods are illustrated with applications to systems exhibiting first-order phase transitions and spin glasses.

Keywords

Spin Glass Order Phase Transition Free Energy Barrier Simulation Point Increase System Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635; ibid. 63 (1989) 1658 (Erratum).Google Scholar
  2. 2.
    B. Kaufman, Phys. Rev. 76 (1949) 1232.ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185 (1969) 832.ADSCrossRefGoogle Scholar
  4. 4.
    P. D. Beale, Phys. Rev. Lett. 76 (1996) 78.ADSCrossRefGoogle Scholar
  5. 5.
    N. B. Wilding, Computer Simulation of Continuous Phase Transitions, this volume.Google Scholar
  6. 6.
    W. Janke, First-Order Phase Transitions, this volume.Google Scholar
  7. 7.
    A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63 (1989) 1195.ADSCrossRefGoogle Scholar
  8. 8.
    W. Janke, Statistical Analysis of Simulations: Data Correlations and Error Estimation, in: Proceedings of the Euro Winter School Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, edited by J. Grotendorst, D. Marx, and A. Muramatsu, John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 10 (2002), pp. 423–445 [http://www.fz-juelich.de].
  9. 9.
    C. Holm and W. Janke, Phys. Rev. B 48 (1993) 936.ADSGoogle Scholar
  10. 10.
    B. A. Berg, Introduction to Multicanonical Monte Carlo Simulations, Fields Inst. Comm. 26 (2000) 1 [cond-mat/9909236]; Generalized Ensemble Simulations for Complex Systems, Comp. Phys. Comm. 104 (2002) 52.Google Scholar
  11. 11.
    W. Janke, Multicanonical Monte Carlo Simulations, Physica A 254 (1998) 164.Google Scholar
  12. 12.
    B. A. Berg and T. Neuhaus, Phys. Lett. B 267 (1991) 249.ADSGoogle Scholar
  13. 13.
    B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68 (1992) 9.ADSCrossRefGoogle Scholar
  14. 14.
    K. Binder, in: Phase Transitions and Critical Phenomena, Vol. 5b, eds. C. Domb and M. S. Green (Academic Press, New York, 1976), p. 1.Google Scholar
  15. 15.
    W. Janke, Int. J. Mod. Phys. C 3 (1992) 1137.ADSGoogle Scholar
  16. 16.
    G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28 (1974) 578; J. Comp. Phys. 23 (1977) 187; J. Chem. Phys. 66 (1977) 1402; I. S. Graham and J. P. Valleau, J. Phys. Chem. 94 (1990) 7894; J. P. Valleau, J. Comp. Phys. 96 (1991) 193.ADSCrossRefGoogle Scholar
  17. 17.
    D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987), pp. 168–175.Google Scholar
  18. 18.
    W. Janke and T. Sauer, Phys. Rev. E 49 (1994) 3475.ADSGoogle Scholar
  19. 19.
    W. Janke and T. Sauer, J. Stat. Phys. 78 (1995) 759.ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    W. Janke and S. Kappler, Phys. Rev. Lett. 74 (1995) 212; M. S. Carroll, W. Janke, and S. Kappler, J. Stat. Phys. 90 (1998) 1277.ADSCrossRefGoogle Scholar
  21. 21.
    B. A. Berg, U. Hansmann, and T. Neuhaus, Phys. Rev. B 47 (1993) 497.ADSGoogle Scholar
  22. 22.
    B. A. Berg, U. Hansmann, and T. Neuhaus, Z. Phys. B 90 (1993) 229.ADSCrossRefGoogle Scholar
  23. 23.
    B. Hesselbo and R. Stinchcombe, Phys. Rev. Lett. 74 (1995) 2151.ADSCrossRefGoogle Scholar
  24. 24.
    B. A. Berg and T. Celik, Phys. Rev. Lett. 69 (1992) 2292.ADSCrossRefGoogle Scholar
  25. 25.
    J. Lee, Phys. Rev. Lett. 71 (1993) 211; ibid. 71 (1993) 2353 (Erratum).ADSCrossRefGoogle Scholar
  26. 26.
    B. A. Berg, U. Hansmann, and Y. Okamoto, J. Phys. Chem. 99 (1995) 2236.CrossRefGoogle Scholar
  27. 27.
    B. A. Berg, J. Stat. Phys. 82 (1996) 323.ADSCrossRefGoogle Scholar
  28. 28.
    G. R. Smith and A. D. Bruce, J. Phys. A28 (1995) 6623; Phys. Rev. E 53 (1996) 6530.ADSGoogle Scholar
  29. 29.
    M. J. Thill, preprints cond-mat/9703234 and cond-mat/9703233.Google Scholar
  30. 30.
    B. A. Berg and W. Janke, unpublished notes.Google Scholar
  31. 31.
    F. Wang and D. P. Landau, Phys. Rev. Lett. 86 (2001) 2050; Phys. Rev. E 64 (2001) 056101.ADSCrossRefGoogle Scholar
  32. 32.
    D. P. Landau, Accelerated Algorithms I: Lattice Models, this volume.Google Scholar
  33. 33.
    U. H. Hansmann and Y. Okamoto, J. Comp. Chem. 14 (1993) 1333; M.-H. Hao and H. A. Scheraga, J. Phys. Chem. 98 (1994) 4940; U. H. Hansmann and Y. Okamoto, Ann. Rev. Comp. Phys. 6 (1999) 129; A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Science) 60 (2001) 96.CrossRefGoogle Scholar
  34. 34.
    T. Neuhaus and J. S. Hager, preprint cond-mat/0201324.Google Scholar
  35. 35.
    K. Leung and R. K. P. Zia, J. Phys. A 23 (1990) 4593.ADSGoogle Scholar
  36. 36.
    C. Borgs and S. Kappler, Phys. Lett. A 171 (1992) 37.ADSGoogle Scholar
  37. 37.
    A. Billoire, T. Neuhaus, and B. Berg, Nucl. Phys. B 396 (1993) 779.ADSCrossRefGoogle Scholar
  38. 38.
    N. B. Wilding, Phys. Rev. E 52 (1995) 602; A. D. Bruce and N. B. Wilding, preprint cond-mat/0206111, to appear in Adv. Chem. Phys.ADSGoogle Scholar
  39. 39.
    S. F. Edwards and P.W. Anderson, J. Phys. F5 (1975) 965.ADSCrossRefGoogle Scholar
  40. 40.
    K. Binder and A. P. Young, Rev. Mod. Phys. 56 (1986) 801.ADSCrossRefGoogle Scholar
  41. 41.
    M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).zbMATHGoogle Scholar
  42. 42.
    K. H. Fischer and J. A. Hertz, Spin Glasses (University Press, Cambridge, 1991).CrossRefGoogle Scholar
  43. 43.
    A. P. Young (editor), Spin Glasses and Random Fields (World Scientific, Singapore, 1997).CrossRefGoogle Scholar
  44. 44.
    W. Janke, B. A. Berg, and A. Billoire, Multi-Overlap Simulations of Spin Glasses, in: NIC Symposium 2001, edited by H. Rollnik and D. Wolf, John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 9 (2002), pp. 301–314 [http://www.fz-juelich.de.
  45. 45.
    G. Parisi, Phys. Rev. Lett. 43 (1979) 1754.ADSCrossRefGoogle Scholar
  46. 46.
    D.S. Fisher and D.A. Huse, Phys. Rev. B 38 (1988) 386.ADSGoogle Scholar
  47. 47.
    B. A. Berg and W. Janke, Phys. Rev. Lett. 80 (1998) 4771.ADSCrossRefGoogle Scholar
  48. 48.
    B. A. Berg, A. Billoire, and W. Janke, Phys. Rev. B 61 (2000) 12143.ADSGoogle Scholar
  49. 49.
    B. A. Berg, U. E. Hansmann, and T. Celik, Phys. Rev. B 50 (1994) 16444.ADSGoogle Scholar
  50. 50.
    B. A. Berg, A. Billoire, and W. Janke, Phys. Rev. E 65 (2002) 045102(R).ADSGoogle Scholar
  51. 51.
    B. A. Berg, A. Billoire, and W. Janke, Phys. Rev. E 66 (2002) 046122.ADSGoogle Scholar
  52. 52.
    E. Marinari and G. Parisi, Europhys. Lett. 19 (1992) 451.ADSCrossRefGoogle Scholar
  53. 53.
    A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov, J. Chem. Phys. 96 (1992) 1776.ADSCrossRefGoogle Scholar
  54. 54.
    C. J. Geyer, in Computing Science and Statistics, Proceedings of the 23rd Symposium on the Interface, E. M. Keramidas (editor) (Interface Foundation, Fairfax, Virginia, 1991); pp. 156–163; C. J. Geyer and E. A. Thompson, J. Am. Stat. Assoc. 90 (1995) 909.Google Scholar
  55. 55.
    K. Hukushima and K. Nemoto, J. Phys. Soc. Japan 65 (1996) 1604.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • W. Janke
    • 1
  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany

Personalised recommendations