Skip to main content

NF-κB in Oncogenesis and As a Target for Cancer Therapy

  • Chapter
Nuclear Factor кB

Abstract

Given the breadth of biological mechanisms associated with NF-κB, it is not surprising that NF-κB has been discovered to be involved with basic processes in cancer. The roles for NF-κB in cancer appear to be complex and likely involve the ability of this transcription factor to control apoptosis, cell-cycle progression, cell differentiation, angiogenesis and cell migration. Consistent with its role in oncogenesis, NF-κB is activated by most oncoproteins and there is evidence that NF-κB interacts with key proteins involved in controlling oncogenesis. Importantly, it has been reported that NF-κB is activated in cancer cells by several chemotherapies and by radiation, and that in many cases this response inhibits the ability of the cancer therapy to induce cell death. Based on these findings, NF-κB is proposed to be a new target for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams J (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59: 2615–2622.

    PubMed  CAS  Google Scholar 

  • Arlt A, Vorndamann J, Muerkoster S, Yu H, Schmidt W, Folsch U & Schafer H (2002) Autocrine production of IL-1β confers constitutive activation of NF-κB activity and chemoresistance in pancreatic carcinoma cell lines. Cancer Res. 62: 910–916.

    PubMed  CAS  Google Scholar 

  • Andela V, Schwarz E, Puzas J, O’Keefe R & Rosier R (2000) Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by NF-κB. Cancer Res. 60: 6557–6562.

    PubMed  CAS  Google Scholar 

  • Arsura M, Mercurio F, Oliver A, Thorgeirsson S & Sonenshein G (2000) Role of the IκB kinase complex in oncogenic Ras and Raf-mediated transformation of rat liver epithelial cells. Mol. Cell. Biol. 20: 5381–5391.

    Article  PubMed  CAS  Google Scholar 

  • Azenshtein E, Luboshits G, Shina S, Neumark E, Shahbazian D, Weil M, Wigler N, Keydar I & Ben-Baruch A (2002) The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res. 15: 1093–1102.

    Google Scholar 

  • Baldwin A (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J. Clin. Invest. 107: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Bargou R, Emmerich F, Krpammann D, Bommert K, Mapara M, Arnold W, Royer H, Grinstein E, Greiner A, Scheidereit C & Dorken B (1997) Constitutive NF-κB/RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Invest. 100: 2961–2969.

    Article  PubMed  CAS  Google Scholar 

  • Brar S, Kennedy T, Whorton A, Sturrock A, Hecksteadt T, Ghio A & Hoidal J (2001) Reactive oxygen species from NADPH: quinone oxidorectase constitutively active NF-κB in malignant melanoma cells. Am. J. Physiol. 280: 659–676.

    Google Scholar 

  • Busch L & Bishop G (2001) Multiple C-terminal regions of the EBV oncoprotein LMP1 cooperatively regulate signaling to B lymphocytes via TNF receptor-associated (TRAF)-dependent and TRAF-independent mechanisms. J. Immunol. 167: 5805–5813.

    PubMed  CAS  Google Scholar 

  • Cabannes, E, Khan G, Aillet F, Jarret, R & Hay R (1999) Mutations in the IκBα gene in Hodgkin’s disease suggest a tumor suppressor role for IκBα. Oncogene 18: 3063–3070.

    Article  PubMed  CAS  Google Scholar 

  • Cahir-McFarland E, Izumi K & Mosialos G (1999) Epstein-Barr virus transformation: involvement of LMP1-mediated activation of NF-κB. Oncogene 18: 6959–6964.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Bonizzi G, Seagroves T, Greten F, Johnson R, Schmidt E & Karin M (2001) IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107: 763–775.

    Article  PubMed  CAS  Google Scholar 

  • Carter R, Geyer B, Xie M, Acevedo-Suarez C & Ballard D (2001) Persistent activation of NF-κB by tax transforming protein involves chronic phosphorylation of IκB kinase subunits IKKβ and IKKγ. J. Biol. Chem. 276: 24445–24448.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann T & Anderson K (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 87: 1104–1112.

    PubMed  CAS  Google Scholar 

  • Cogswell P, Guttridge D, Funkhouser W & Baldwin A (2000) Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and Bcl-3. Oncogene 19: 1123–1131.

    Article  PubMed  CAS  Google Scholar 

  • Cusack J, Liu R & Baldwin A (2000) Inducible chemoresistance to CPT-11 in colorectal cancer cells and a xenograft model is overcome by inhibition of NF-κB activation. Cancer Res. 60: 2323–2330.

    PubMed  CAS  Google Scholar 

  • Cusack J, Liu R, Houston M, Abendroth K, Elliott P, Adams J & Baldwin A (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic NF-κB inhibition. Cancer Res. 61: 3535–3540.

    PubMed  CAS  Google Scholar 

  • Duffey D, Chen Z, Dong G, Ondrey F, Wolf J, Brown K, Siebenlist U & Van Waes C (1999) Expression of a dominant mutant IκBα in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res. 59: 3468–3474.

    PubMed  CAS  Google Scholar 

  • Dumont A, Hehner S, Hofmann T, Ueffing M, Dröge W & Schmitz M (1999) Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB. Oncogene 18: 747–757.

    Article  PubMed  CAS  Google Scholar 

  • Eliopoulos A, Davies C, Blake S, Murray P, Najafipour S, Tsichlis P & Young L (2002) The oncogenic protein kinase Tpl-2/Cot contributes to EBV-encoded LMP1-induced NF-κB signaling downstream of TRAF2. J. Virol. 76: 4567–4579.

    Article  PubMed  CAS  Google Scholar 

  • El-Omar M, Carrington M, Chow W, McColl K, Bream J, Young H, Herrera J, Lissowska J, Yuan C, Rothman N, Lanyon G, Martin M, Fraumeni J & Rabkin C (2001) The role of IL-1 polymorphisms in the pathogenesis of gastric cancer. Nature 412: 99.

    Article  PubMed  CAS  Google Scholar 

  • Farrow B & Evers B (2002) Inflammation and the development of pancreatic cancer. Surg. Oncol. 10: 153–169.

    Article  PubMed  Google Scholar 

  • Figg WD, Dahut W, Duray P, Hamilton M, Tompkins A, Steinberg S, Jones E, Premkumar A, Linehan W, Floeter M, Chen C, Dixon S, Kohler K, Kruger E, Gubish E, Pluda J & Reed E (2001a) A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin. Cancer Res. 7: 1888–1893.

    PubMed  CAS  Google Scholar 

  • Figg WD, Arlen P, Gulley J, Fernandez P, Noone M, Fedenko K, Hamilton M, Parker C, Kruger E, Pluda A & Dahut W (2001b) A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen-independent prostate cancer. Sem. Oncol. 28: 62–66.

    Article  CAS  Google Scholar 

  • Finco T, Westwick J, Norris J, Beg A, Der C & Baldwin A (1997) Oncogenic H-Ras-induced signaling activates NF-κB transcriptional activity, which is required for cellular transformation. J. Biol. Chem. 272: 24113–24116.

    Article  PubMed  CAS  Google Scholar 

  • Fine HA, Figg W, Jaeckle K, Wen P, Kyritsis A, Loeffler J, Levin V, Black P, Kaplan R, Pluda J & Yung W (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J. Clin. Oncol. 18: 708–715.

    PubMed  CAS  Google Scholar 

  • Gapuzan M, Yufit P & Gilmore T (2002) Immortalized embryonic mouse fibroblasts lacking the RelA subunit of transcription factor NF-κB have a malignantly transformed phenotype. Oncogene 21: 2484–2492.

    Article  PubMed  CAS  Google Scholar 

  • Gasparian A, Yao Y, Kowalczyk D, Lyakh L, Karseladze A, Slaga T & Budunova I (2002) The role of IKK in constitutive activation of NF-κB transcription factor in prostate carcinoma cells. J. Cell Sci. 115: 141–151.

    PubMed  CAS  Google Scholar 

  • Ghosh S, May M & Kopp E (1998) NF-κB and Rel proteins: evolutionarily conserved mediators of the immune response. Annu. Rev. Immunol. 16: 225–260.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore T (1999) Multiple mutations contribute to the oncogenicity of the retroviral protein v-Rel. Oncogene 18: 6925–6937.

    Article  PubMed  CAS  Google Scholar 

  • Gustin J, Maehama T, Dixon J & Donner D (2001) The PTEN tumor suppressor protein inhibits TNF-induced NF-κB activity. J. Biol. Chem. 276: 27740–27744.

    Article  PubMed  CAS  Google Scholar 

  • Guttridge D, Albanese C, Reuther J, Pestell R & Baldwin A (1999) NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 198: 5785–5799.

    Google Scholar 

  • Guttridge D, Mayo M, Madrid L, Wang C-Y & Baldwin A (2000) NF-κB-induced loss of MyoD mRNA: possible role in muscle decay and cachexia. Science 289: 2363–2366.

    Article  PubMed  CAS  Google Scholar 

  • Hardwick J, van den Brink G, Offerhaus G, van Deventer S & Peppelenbosch M (2001) NF-κB, p38 MAPK, and JNK are highly expressed and active in the stroma of human colonic adenomatous polyps. Oncogene 20: 819–827.

    Article  PubMed  CAS  Google Scholar 

  • He Z, Xin B, Yang X, Chan C & Cao L (2000) NF-κB activation is involved in LMP1-mediated transformation and tumorigenesis of rat-1 fibroblasts. Cancer Res. 60: 1845–1848.

    PubMed  CAS  Google Scholar 

  • Heppner C, Bilimoria K, Agarwal S, Kester M, Whitty L, Guru S, Chandrasekharappa S, Collins F, Spiegel A, Marx S & Burns A (2001) The tumor suppressor protein menin interacts with NF-κB and inhibits NF-κB-mediated transactivation. Oncogene 20: 4917–4925.

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Chauhan D, Schlossman R, Richardson P & Anderson K (2001a) The role of TNFα in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20: 4519–4527.

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Richardson P, Chauhan D, Palombella V, Elliott P, Adams J & Anderson K (2001b) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61: 3071–3076.

    PubMed  CAS  Google Scholar 

  • Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J & Anderson K (2002) NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem. 277: 16639–16647.

    Article  PubMed  CAS  Google Scholar 

  • Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C & Strauss M (1999) NF-κB function in growth control: regulation of cyclin D1 expression and G0/Gl-to-S-phase transition. Mol. Cell. Biol. 19: 2690–2698.

    PubMed  CAS  Google Scholar 

  • Hopken U, Foss H, Meyer D, Hinz M, Leder K, Stein H & Lipp M (2002) Upregulation of chemokine receptor CCR7 in classic but not lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood 99: 1109–1126.

    Article  PubMed  CAS  Google Scholar 

  • Horie R, Watanabe T, Morishita, Ito K, Ishida T, Kanegae Y, Saito L, Higashihara M, Mori S, Kadin M & Watanabe T (2002) Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodgkin-Reed-Sternberg cells. Oncogene 21: 2493–2503.

    Article  PubMed  CAS  Google Scholar 

  • Huang S, DeGuzman A, Bucana C & Fidler I (2000) NF-κB activity correlates with growth, angiogenesis and metastasis of human melanoma cells in nude mice. Clin. Cancer Res. 6: 2573–2581.

    PubMed  CAS  Google Scholar 

  • Huang S, Pettaway C, Uehara H, Bucana D & Fidler I (2001) Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion and metastasis. Oncogene 20: 4188–4197.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Johnson K, Norris J & Fan W (2000) NF-κB/IκB signaling pathways may contribute to the mediation of paclitaxel-induced apoptosis in solid tumor cells. Cancer Res. 60: 4426–4432.

    PubMed  CAS  Google Scholar 

  • Kaltschmidt B, Kaltschmidt C, Hofmann T, Hehner S, Dröge W & Schmitz M (2000) The pro-or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus. Eur. J. Biochem. 267: 3828–3835.

    Article  PubMed  CAS  Google Scholar 

  • Kapahi P, Takahashi T, Natoli G, Adams S, Chen Y, Tsien R & Karin M (2000) Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IKK. J. Biol. Chem. 275: 36062–36066.

    Article  PubMed  CAS  Google Scholar 

  • Karin M & Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18: 621–663.

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Cao Y, Greten F & Li Z-W (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2: 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Keifer J & Baldwin A (2001) Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J. Biol. Chem. 276: 22382–22387.

    Article  PubMed  CAS  Google Scholar 

  • Koul D, Yao Y, Abbruzzese J, Yung W & Reddy S (2001) Tumor suppress MMAC/PTEN inhibits cytokine-induced NF-κB activation without interfering with the IκB degradation pathway. J. Biol. Chem. 276: 11402–11408.

    Article  PubMed  CAS  Google Scholar 

  • LaCasse E, Baird S, Korneluk R & MacKenzie A (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17: 3247–3259.

    Article  PubMed  Google Scholar 

  • Little R, Wyvill K, Pluda J, Welles L, Marshall V, Figg W, Newcomb F, Tosato G, Feigal E, Steinberg S, Whitby D, Goedert J & Yarchoan R (2000) Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J. Clin. Oncol. 18: 2593–2602.

    PubMed  CAS  Google Scholar 

  • Ludwig L, Kessler H, Wagner M, Hoang-Vu C, Dralle H, Adler G, Böhm B & Schmid R (2001) NF-κB is constitutively active in C-cell carcinoma and required for RET-induced transformation. Cancer Res. 61: 4526–4535.

    PubMed  CAS  Google Scholar 

  • Mayo M, Wang C-Y, Cogswell P, Rogers-Graham K, Lowe S, Der C & Baldwin A (1997) Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278: 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  • Mayo M, Madrid L, Westerheide S, Jones D, Yuan X, Baldwin A & Whang Y (2002) PTEN blocks TNF-induced NF-κB-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem. 277: 11116–11125.

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Owens D, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G & Baldwill F (1999) Mice deficient in TNFα are resistant to skin carcinogenesis. Nat. Med. 5: 828–831.

    Article  PubMed  CAS  Google Scholar 

  • Mosialos, G. 1997. The role of Rel/NF-κB proteins in viral oncogenesis and the regulation of viral transcription. Sem. Cancer Biol. 8: 121–129.

    Article  CAS  Google Scholar 

  • Mujumdar S, Lamothe B & Aggarwal B (2002) Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J. Immunol. 168: 2644–2651.

    Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan M, McClanahan T, Murphy E, Yuan W, Wagner S, Barrera J, Monar A, Verastegui E & Zlotnik A (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Neurath M, Pettersson S, Mey zum Buschenfeld K & Strober W (1996) Local administration of anti-sense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nat. Med. 2: 998–1004.

    Article  PubMed  CAS  Google Scholar 

  • Niu C, Yan H, Yu T, Sun HP, Liu JX, Li XS, Wu W, Zhang FQ, Chen Y, Zhou L, Li JM, Zeng XY, Yang RR, Yuan MM, Ren MY, Gu FY, Cao Q, Gu BW, Su XY, Chen GQ, Xiong SM, Zhang T, Waxman S, Wang ZY, Chen Z, Hu J, Shen Z-X & Chen SJ (1999) Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 94: 3315–3324.

    PubMed  CAS  Google Scholar 

  • Ogiso Y, Tomida A, Lei S, Omura S & Tsuro T (2000) Proteasome inhibition circumvents solid tumor resistance to topoisomerase II-directed drugs. Cancer Res. 60: 2429–2434.

    PubMed  CAS  Google Scholar 

  • Orlowski RZ, Eswara J, Lafond-Walker A, Grever M, Orlowski M & Dang CV (1998) Tumor growth inhibition in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res. 58: 4342–4348.

    PubMed  CAS  Google Scholar 

  • Orlowski RZ (1999) The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ. 6: 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Orlowski RZ & Baldwin AS (2002) NF-κB as a therapeutic target in cancer. Trends Mol. Med. 8: 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Pederson L, Winding B, Foged N, Spelsberg T & Oursler M (1999) Identification of breast cancer cell line-derived paracrine factors that stimulate osteoclast activity. Cancer Res. 59: 5849–5855.

    PubMed  CAS  Google Scholar 

  • Pianetti S, Arsura M, Romieu-Mourez R, Coffey R & Sonenshein G (2001) Her-2/neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκBα; that can be inhibited by the tumor suppressor PTEN. Oncogene 20: 1287–1299.

    Article  PubMed  CAS  Google Scholar 

  • Rayet B & Gelinas C (1999) Aberrant Rel/NF-κB genes and activity in human cancer. Oncogene 18: 6938–6947.

    Article  PubMed  CAS  Google Scholar 

  • Reuther J, Reuther G, Cortez D, Prendergast A & Baldwin A (1998) A requirement for NF-κB activation in Bcr-Abl-mediated transformation. Genes Dev. 12: 968–981.

    Article  PubMed  CAS  Google Scholar 

  • Romieu-Mourez R, Landesman-Bollag E, Seldin D, Traish A, Mercurio F & Sonenshein G (2001) Roles of IKK and protein kinase CKII in activation of NF-κB in breast cancer. Cancer Res. 61: 3810–3818.

    PubMed  CAS  Google Scholar 

  • Romashkova J & Makarov S (1999) NF-κB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Russo S, Tepper J, Baldwin A, Liu R, Adams J, Elliott P & Cusack J (2001) Enhancement of radio-sensitivity by proteasome inhibition: implications for a role of NF-κB. Int. J. Rad. Oncol. Biol. Phys. 50: 183–193.

    Article  CAS  Google Scholar 

  • Ryan K, Ernst M, Rice N & Vousden N (2000) Role of NF-κB in p53-mediated programmed cell death. Nature 404: 892–897.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss U, Puschner S, Kremmer E, Mak T, Engelmann H, Hammerschmidt W & Keiser A (2001) TRAF6 is a critical mediator of signal transduction by the viral oncogene LMP1. EMBO J. 20: 5678–5691.

    Article  PubMed  CAS  Google Scholar 

  • Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar, Zeddis J & Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma N. Engl. J. Med. 341: 1565–1571.

    Article  CAS  Google Scholar 

  • Sovak M, Bellas R, Kim D, Zanieski G, Rogers A, Traish A & Sonenshein G (1997) Aberrant NF-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100: 2952–2960.

    Article  PubMed  CAS  Google Scholar 

  • Spitkovsky D, Hehner S, Hofmann T, Moller A & Schmitz M (2002) The human papillomavirus oncoprotein E7 attenuates NF-κB activation by targeting the IKK complex. J. Biol. Chem. 277: 25576–25582.

    Article  PubMed  CAS  Google Scholar 

  • Suh J, Payvandi F, Edelstein L, Amenta P, Zong W, Gelinas C & Rabson A (2002) Mechanisms of constitutive NF-κB activation in human prostate cancer cells. Prostate 52: 183–200.

    Article  PubMed  CAS  Google Scholar 

  • Sunwoo J, Chen Z, Dong G, Yeh N, Crowl-Bancroft C, Sausville E, Adams J, Elliott P & Van Waes C (2001) Novel proteasome inhibitor PS-341 inhibits activation of NF-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. 7: 1419–1428.

    PubMed  CAS  Google Scholar 

  • Tanaka H, Matsumara I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machi T, Pestell R & Kanakura Y (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell 9: 1017–1029.

    Article  PubMed  CAS  Google Scholar 

  • Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M & DuBois R (1998) Cyclo-oxygenase regulates angiogenesis induced by colon carcinoma cells. Cell 93: 705–716.

    Article  PubMed  CAS  Google Scholar 

  • van Hogerlinden M, Rozell B, Ahrlund-Richter L & Toftgard R (1999) Squamous cell carcinoma and increased apoptosis in skin with inhibited Rel/NF-κB signaling. Cancer Res. 59: 3299–3303.

    PubMed  Google Scholar 

  • Wang C-Y, Cusack J, Liu R & Baldwin A (1999) Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nat. Med. 5: 412–417.

    Article  PubMed  Google Scholar 

  • Waxman S & Anderson K (2001) History of development of arsenic derivatives in cancer therapy. Oncologist 6: 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Webster G & Perkins N (1999) Transcriptional cross-talk between NF-κB and p53. Mol. Cell. Biol. 19: 3485–3495.

    PubMed  CAS  Google Scholar 

  • Westerheide S, Mayo M, Anest V, Hanson J & Baldwin A (2001) The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate Gl transition. Mol. Cell. Biol. 21: 8428–8436.

    Article  PubMed  CAS  Google Scholar 

  • Willis T, Jadayel D, Du M, Peng H, Perry A, Abdul-Rauf M, Price H, Karran L, Majekodunmi O, Wlodarska I, Pan L, Crook T, Hamoudi R, Isaacson P & Dyer M (1999) Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96: 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Wolf J, Chen Z, Dong G, Sunwoo J, Bancroft C, Capo D, Yeh N, Mukaida N & Van Waes C (2001) IL-1α promotes NF-κB and AP-1-induced IL-8 expression, cell survival and proliferation in head and neck squamous cell carcinomas. Clin. Cancer Res. 7: 1812–1820.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y & Gaynor R (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J. Clin. Invest. 107: 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E & Dyson N (1996) Tumor induction and tissue atrophy in mice lacking E2F1. Cell 85: 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Hubbard A & Giardina C (2000) NF-κB regulates transcription of the mouse telomerase catalytic subunit. J. Biol. Chem. 275: 36671–36675.

    Article  PubMed  CAS  Google Scholar 

  • You Z, Madrid LV, Saims D, Sedivy J & Wang C-Y (2002) c-Myc sensitizes cells to tumor necrosis factor-mediated apoptosis by inhibiting nuclear factor κB transactivation. J. Biol. Chem. 277: 36671–36677.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baldwin, A.S. (2003). NF-κB in Oncogenesis and As a Target for Cancer Therapy. In: Beyaert, R. (eds) Nuclear Factor кB. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0163-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0163-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3983-3

  • Online ISBN: 978-94-010-0163-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics