Skip to main content

Abstract

Ammonia is a key factor in the pathogenesis of hepatic encephalopathy (HE), which is a major complication of acute and chronic liver failure. Signs of HE are highly variable and range from mild personality changes to deep coma, but, at any level of severity, HE is potentially reversible (for reviews see14). The molecular mechanisms underlying ammonia neurotoxicity are incompletely understood. However, that altered astrocytic function critically contributes to ammonia neurotoxicity is beyond doubt.2,5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hazell AS and Butterworth RF. Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc Soc Exp Biol Med 1999;222:99–112.

    Article  PubMed  CAS  Google Scholar 

  2. Norenberg MD, Neary JT, Bender AS and Dombro RS. Hepatic encephalopathy: a disorder in glial-neuronal communication. Prog Brain Res 1992;94:261–269.

    Article  PubMed  CAS  Google Scholar 

  3. Schliess F and Häussinger D. Hepatic encephalopathy and NO. J Hepatol 2001;34:610–612.

    Article  PubMed  CAS  Google Scholar 

  4. Häussinger D, Kircheis G, Fischer R, Schliess F and vom Dahl S. Hepatic encephalopathy in chronic liver desease: a clinical manifestation of astrocyte swelling and low grade cerebral edema. J Hepatol 2000;32:1035–1038.

    Article  PubMed  Google Scholar 

  5. Norenberg MD. Astrocytic-ammonia interactions in hepatic encephalopathy. Semin liver Dis 1996;16:245–253.

    Article  PubMed  CAS  Google Scholar 

  6. Martinez HA, Bell KP and Norenberg MD. Glutamine synthetase: glial localization in brain. Science 1977;195:1356–1358.

    Article  Google Scholar 

  7. Schliess F and Häussinger D. Cell hydration and insulin signalling. Cell Physiol Biochem 2000;10:403–409.

    Article  PubMed  CAS  Google Scholar 

  8. Häussinger D and Schliess F. Osmotic induction of signaling cascades: Role in regulation of cell function. Biochem Biophys Res Comm 1999;255:551–555.

    Article  PubMed  Google Scholar 

  9. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E and Häussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998;78:247–306.

    PubMed  CAS  Google Scholar 

  10. Kosenko E, Kaminski Y, Lopata O, Muravyov N and Felipo V. Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic Biol Med 1999;26:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  11. Kosenko E, Kaminsky Y, Stavroskaya IG and Felipo V. Alteration of mitochondrial calcium homeostasis by ammonia-induced activation of NMDA receptors in rat brain in vivo. Brain Res 2000;880:139–146.

    Article  PubMed  CAS  Google Scholar 

  12. Hermenegildo C, Monfort P and Felipo V. Activation of N-methyl-D-aspartate receptors in rat brain in vivo following acute ammonia intoxication: characterization by in vivo brain microdiarysis. Hepatology 2000;31:709–715.

    Article  PubMed  CAS  Google Scholar 

  13. Blei AT and Larsen FS. Pathophysiology of cerebral edema in fulminant hepatic failure. J Hepatol 1999;31:771–776.

    Article  PubMed  CAS  Google Scholar 

  14. Larsen FS, Gottstein J and Blei AT. Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J Hepatol 2001;34:548–554.

    Article  PubMed  CAS  Google Scholar 

  15. Kosenko E, Kaminsky Y, Lopata O, Muravyov N, Kaminsky A, Hermenegildo C and Felipo V. Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication. Metab Brain Dis 1998;13:29–41.

    Article  PubMed  CAS  Google Scholar 

  16. Hermenegildo C, Marcaida G, Montoliu C, Grisolia S, Minana MD and Felipo V. NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem Res 1996;21:1237–1244.

    Article  PubMed  CAS  Google Scholar 

  17. Hazell AS and Norenberg MD. Ammonia and manganese increase arginine uptake in cultured astrocytes. Neurochem Res 1998;23:869–873.

    Article  PubMed  CAS  Google Scholar 

  18. Braissant O, Honegger P, Loup M, Iwase K, Takiguchi M and Bachmann C. Hyperammonemia: regulation of argininosuccinate synthetase and argininosuccinate lyase genes in aggregating cell cultures of fetal rat brain. Neurosci Lett 1999;266:89–92.

    Article  PubMed  CAS  Google Scholar 

  19. Master S, Gottstein J and Blei AT. Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 1999;30:876–880.

    Article  PubMed  CAS  Google Scholar 

  20. Klotz LO. Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen. Biol Chem 2002;383:443–456.

    Article  PubMed  CAS  Google Scholar 

  21. Arteel GE, Briviba K and Sies H. Protection against peroxynitrite. FEBS Lett 1999;445:226–230.

    Article  PubMed  CAS  Google Scholar 

  22. Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA and Darley-Usmar V. Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1999;1411:385–400.

    Article  PubMed  CAS  Google Scholar 

  23. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 1998;356:1–11.

    Article  PubMed  CAS  Google Scholar 

  24. Schliess F, Görg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K and Häussinger D. Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J. 2002;16:739–741.

    PubMed  CAS  Google Scholar 

  25. Chamuleau RA. Animal models of hepatic encephalopathy. Semin.Iiver Dis 1996;16:265–270.

    Article  CAS  Google Scholar 

  26. Butterworth RF, Girard G and Giguere JF. Regional differences in the capacity for ammonia removal by brain following portocaval anastomosis. J Neurochem 1988;51:486–490.

    Article  PubMed  CAS  Google Scholar 

  27. Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H and Kirchhoff F. Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J 2001;15:1270–1272.

    PubMed  CAS  Google Scholar 

  28. Porter JT and McCarthy KD. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 1995;13:101–112.

    Article  PubMed  CAS  Google Scholar 

  29. Mollace V, Colasanti M, Rodino P, Lauro GM, Rotiroti D and Nistico G. NMDA-dependent prostaglandin E2 release by human cultured astroglial cells is driven by nitric oxide. Biochem Biophys Res Commun 1995;215:793–799.

    Article  PubMed  CAS  Google Scholar 

  30. Colasanti M, Cavalieri E, Persichini T, Mollace V, Mariotto S, Suzuki H and Lauro GM. Bacterial lipopolysaccharide plus interferon-gamma elicit a very fast inhibition of a Ca2+-dependent nitric-oxide synthase activity in human astrocytoma cells. J Biol Chem 1997;272:7582–7785.

    Article  PubMed  CAS  Google Scholar 

  31. Allert N, Koller H and Siebler M. Ammonia-induced depolarization of cultured rat cortical astrocytes. Brain Res 1998;782:261–270.

    Article  PubMed  CAS  Google Scholar 

  32. Mayer ML, Westbrook GL and Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. FASEB J 1984;309:261–263.

    CAS  Google Scholar 

  33. Araque A, Li N, Doyle RT and Haydon PG. SNARE protein-dependent glutamate release from astrocytes. J Neurosci 2000;20:666–673.

    PubMed  CAS  Google Scholar 

  34. Peng TI and Greenamyre JT. Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol Pharmacol 1998;53:974–980.

    PubMed  CAS  Google Scholar 

  35. Bolanos JP, Peuchen S, Heales SJ, Land JM and Clark JB. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 1994;63:910–916.

    Article  PubMed  CAS  Google Scholar 

  36. Minelli A, Lyons S, Nolte C, Verkhratsky A and Kettenmann H. Ammonium triggers calcium elevation in cultured mouse microglial cells by initiating Ca2+ release from thapsigargin-sensitive intracellular stores. Eur J Physiol 2001;439:370–377.

    Article  Google Scholar 

  37. Isaacks RE, Bender AS, Kim CY, Shi YF and Norenberg MD. Effect of ammonia and methionine sulfoximine on myo-inositol transport in cultured astrocytes. Neurochem Res 1999;24:51–59.

    Article  PubMed  CAS  Google Scholar 

  38. Bender AS, Schousboe A, Reichelt W and Norenberg MD. Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J Neurosci. Res 1998;52:307–321.

    CAS  Google Scholar 

  39. Stewart VC, Sharpe MA, Clark JB and Heales SJ. Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain. J Neurochem 2000;75:694–700.

    Article  PubMed  CAS  Google Scholar 

  40. Desjardins P, Rao KV, Michalak A, Rose C and Butterworth RF. Effect of portacaval anastomosis on glutamine synthetase protein and gene expression in brain, liver and skeletal muscle. Metab Brain Dis 1999;14:273–280.

    Article  PubMed  CAS  Google Scholar 

  41. Buchczyk DP, Briviba K, Hartl FU and Sies H. Responses to peroxynitrite in yeast: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a sensitive intracellular target for nitration and enhancement of chaperone expression and ubiquitination. Biol Chem 2000;381:121–126.

    Article  PubMed  CAS  Google Scholar 

  42. Lockwood AH, Yap EW, Rhoades HM and Wong WH. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy. J Cereb Blood Flow Metab 1991;11:331–336.

    Article  PubMed  CAS  Google Scholar 

  43. Rowland LP and Shneider NA. Medical progress: amyotrophic lateral sclerosis. N Engl J Med 2001;344:1688–1700.

    Article  PubMed  CAS  Google Scholar 

  44. Willard MC, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ and Brusilow SW. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 1996;71:589–599.

    Article  Google Scholar 

  45. Takahashi H, Koehler RC, Brusilow SW and Traystman RJ. Glutamine synthetase inhibition prevents cerebral oedema during hyperammonemia. Acta Neurochir Suppl Wien. 1990;51:346–347.

    PubMed  CAS  Google Scholar 

  46. Vogels BA, Maas MA, Daalhuisen J, Quack G and Chamuleau RA. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology 1997;25:820–827.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schliess, F. et al. (2003). Astroglial protein tyrosine nitration by ammonia. In: Jones, E.A., Meijer, A.J., Chamuleau, R.A.F.M. (eds) Encephalopathy and Nitrogen Metabolism in Liver Failure. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0159-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0159-5_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3967-3

  • Online ISBN: 978-94-010-0159-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics