Skip to main content

Single-molecule measurement of elasticity of Serine-, Glutamate- and Lysine-Rich repeats of invertebrate connectin reveals that its elasticity is caused entropically by random coil structure

  • Chapter
Mechanics of Elastic Biomolecules

Abstract

Invertebrate connectin (I-connectin) is a 1960 kDa elastic protein linking the Z line to the tip of the myosin filament in the giant sarcomere of crayfish claw closer muscle (Fukuzawa et al., 2001 EMBO J 20: 4826–4835). I-Connectin can be extended up to 3.5 µm upon stretch of giant sarcomeres. There are several extensible regions in I-connectin: two long PEVK regions, one unique sequence region and Ser-, Glu- and Lys-rich 68 residue-repeats called SEK repeats. In the present study, the force measurement of the single recombinant SEK polypeptide containing biotinylated BDTC and GST tags at the N and C termini, respectively, were performed by intermolecular force microscopy (IFM), a refined AFM system. The force vs. extension curves were well fit to the wormlike chain (WLC) model and the obtained persistence length of 0.37 ± 0.01 nm (n = 11) indicates that the SEK region is a random coil along its full length. This is the first observation of an entropic elasticity of a fully random coil region that contributes to the physiological function of I-connectin.

Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki T, Hiroshima M, Kitamura K, Tokunaga M and Yanagida T (1997) Non-contact scanning probe microscopy with sub-piconewton force sensitivity. Ultramicroscopy 70: 45–55.

    Article  CAS  Google Scholar 

  • Bustamante C, Marko JF, Siggia ED and Smith S (1994) Entropic Elasticity of λ-Pharge DNA. Science 265: 1599–1600.

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa A, Shimamura J, Takemori S, Kanzawa N, Yanaguchi M, Sun P, Maruyama K and Kimura S (2001) Invertebrate connectin spans as much as 3.5 urn in the giant sarcomeres of crayfish claw muscle. EMBO J 20: 4826–4835.

    Article  PubMed  CAS  Google Scholar 

  • Granzier H and Labeit S (2002) Cardiac titin: an adjustable multifunctional spring. J Physiol 541: 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Cruz G, Van Heerden AH and Wang K (2001) Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem 276: 7442–7449.

    Article  PubMed  CAS  Google Scholar 

  • Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke WA and Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res 84: 1339–1352.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S and Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M and Erickson HP (2001) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci USA 98: 10,682–10,686.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC and Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261:62–71.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S and Gregorio CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146: 631–644.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA (2000) Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle. Histol Histopathol 15: 799–811.

    PubMed  CAS  Google Scholar 

  • Manabe T, Kawamura Y, Higuchi H, Kimura S and Maruyama K (1993) Connectin, giant elastic protein, in giant sarcomeres of crayfish claw muscle. J Muscle Res Cell Motil 14: 654–665.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1997) Connectin/titin, giant elastic protein of muscle. FASEB J 11: 341–345.

    PubMed  CAS  Google Scholar 

  • Murtif VL, Bahler CR and Samols D (1985) Cloning and expression of the 1.3 S biotin-containing subunit of transcarboxylase Proc Natl Acad Sci USA 82: 5617–5621.

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga M, Aoki T, Hiroshima M, Kitamura K and Yanagida T (1997) Subpiconewton intermolecular force microscopy. Biochem Biophys Res Commun 231: 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Wu Y, Labeit D, Labeit S and Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 281: H1793–H1799.

    PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2002) Role of titin in vertebrate striated muscle. Philos Trans R Soc Lond B Biol Sci 357: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • van Straaten M, Goulding D, Kolmerer B, Labeit S, Clayton J, Leonard K and Bullard B (1999) Association of kettin with actin in the Z-disc of insect flight muscle. J Mol Biol 285: 1549–1562.

    Article  PubMed  Google Scholar 

  • Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S and Granzier H (2002) Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. J Biol Chem 277: 11,549–11,558.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumiko Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fukuzawa, A., Hiroshima, M., Maruyama, K., Yonezawa, N., Tokunaga, M., Kimura, S. (2003). Single-molecule measurement of elasticity of Serine-, Glutamate- and Lysine-Rich repeats of invertebrate connectin reveals that its elasticity is caused entropically by random coil structure. In: Linke, W.A., Granzier, H., Kellermayer, M.S.Z. (eds) Mechanics of Elastic Biomolecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0147-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0147-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3971-0

  • Online ISBN: 978-94-010-0147-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics