Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 91))

Abstract

The area between the micro- and macroscopic ranges of magnetism offers an exciting field for research and development. The design of magnets for small-scale applications requires several physical parameters to be simultaneously controlled and matched to each other. First one should control the exchange energy, the crystalline anisotropy and the atomic magnetic moment; material parameters governing e. g. the ordering temperature and magnetization of the material. This may be accomplished by applying modern preparation techniques to make thin films and layered materials, yielding a variety of intrinsic magnetic properties [1]. Second, the demagnetizing effects that are inevitably introduced when the lateral extensions of the material are limited must be incorporated in the design to yield the proper zero-field state as well as dynamic response [2]. There are many questions to answer about the zero-field state of a magnetic particle, for instance how the critical sizes for formation of a single domain (SD) can be reached. SD particles with two possible orientations of their moment in zero field — a binary bit — are suggested as building blocks of a novel magnetic memory [3]. At the same time as a stable zero-field state is obtained, magnetization reversal should occur at an appropriate field with a narrow distribution of switching fields among the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bland, J. A. C. and Heinrich, B. (1994) Ultrathm Magnetic Structures I and II. Springer, Berlin.

    Google Scholar 

  2. See e. g. Aharoni, A. (1996) Introduction to the Theory of Ferromagnelism. Clarendon Press, Oxford.

    Google Scholar 

  3. See e. g. White, R. L., New, R. M. H. and Pease, R. F. W. (1997) Patterned media: A viable Route to 50 Gbit/in2 and Up for Magnetic Recording?, IEEE Trans. Magn. 33, 990–995. Chou, S. Y. (1997) Patterned Magnetic Nanostructures and Quantized Magnetic Disks, Proc. IEEE 85, 652-671.

    Article  CAS  Google Scholar 

  4. Plumer, M., van Ek, J. and Weiler, D. (eds.) (2001) The Physics of Ultrahigh-Density Magnetic Recording. Springer, Berlin.

    Google Scholar 

  5. Hanson, M., Johansson, C., Nilsson, B., Isberg, P. and Wäppling R. (1999) Magnetic properties of two-dimensional arrays of epitaxial Fe (001) sub-micron particles, J. Appl. Phys. 85, 2793–2799.

    Article  CAS  Google Scholar 

  6. Hanson, M., Kazakova, O., Blomqvist, P., Wäppling, R. and Nilsson, B. (2002) Magnetic domain structures in submicron size particles of epitaxial Fe (001): shape anisotropy and thickness dependence, (Unpublished).

    Google Scholar 

  7. Kazakova, O., Hanson, M., Blomqvist, P. and Wäppling, R. (2001) Magnetic properties of two-dimensional arrays of epitaxial Co submicron particles: critical size for single-domain formation and multidomain structures, J. Appl. Phys. 90, 2440–2446.

    Article  CAS  Google Scholar 

  8. Hanson, M., Johansson, C., Nilsson, B. and Svedberg, E. B. (2001) Magnetic propertiees of epitaxial Ni (001) films and sub-micron particles, J. Magn. Magn. Mater. 236 139–150.

    Article  CAS  Google Scholar 

  9. Kazakova, O., Hanson, M., Blomqvist, P. and Wäppling, R. (2002) Magnetic properties of submicron size particles made from Fe/Co multilayers, J. Magn. Magn. Mater. 240, 21–23.

    Article  CAS  Google Scholar 

  10. Hanson, M., Kazakova, O., Blomqvist, P. and Wäppling, R. (2002) Submicron particles of Fe/Co multilayers: Influence of interactions, J. Appl. Phys. 91, 7042–7044.

    Article  Google Scholar 

  11. Kazakova, O., Hanson, M., Blomqvist, P. and Wäppling, R. (2002) Interplay between shape and magnetocrystalline anisotropies in patterned bcc Fe/Co multilayers, (Unpublished).

    Google Scholar 

  12. Kazakova, O., Hanson, M., Blixt, A. M. and Hjörvarsson (2002) Domain structure of circular and ring magnets, J. Magn. Magn. Material, (In press).

    Google Scholar 

  13. Isberg, P., Svedberg, E. B., Hjörvarsson, B., Wäppling, R. and Hultman L. (1997) Growth of epitaxial Fe/V (001) superlattice films, Vacuum 48 483–489.

    Article  CAS  Google Scholar 

  14. Blomqvist, P. and Wäppling, R. (2002) Growth of ultrathin cobalt films on Fe(001) studied by reflection high-energy electron diffraction and x-ray diffraction, J. Vac. Sci. Technol. A 50, 234–238.

    Article  Google Scholar 

  15. Blomqvist, P., Wäppling, R., Broddefalk, A., Nordblad, P., te Velthuis, G. E. and Felcher, G. P. (2002) Structural and magnetic properties of BCC Fe/Co (0 0 1) superlattices, J. Magn. Magn. Mater. 248 75–84.

    Article  CAS  Google Scholar 

  16. Svedberg, E. B., Sandström, P., Sundgren, J. E., Greene, J. E. and Madsen, L. D. (1999) Epitaxial growth of Ni on MgO(002) 1x1: surface interaction vs. multidomain strain relief, Surface Science 429 206–216.

    Google Scholar 

  17. See e. g. Lebib, A., Chen, Y., Carcenac, F., Cambril, E., Manin, L., Couraud, L. and Launois, H. (2000) Tri-layer systems for nanoimprint lithography with an improved process latitude, Microel. Eng. 53 175–178, and references therein.

    Article  CAS  Google Scholar 

  18. Morrish, A. H. (1965) The Physical Principles of Magnetism. Wiley, New York.

    Google Scholar 

  19. Zhu, J., Zheng, Y., Prinz, G. (2000) Ultrahigh density vertical magnetoresistive random access memory J. Appl. Phys. 87 6668–6673.

    Google Scholar 

  20. See e. g. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. and Ono, T. (2000) Magnetic Vortex Core observation in Circular Dots of Permalloy, Science 289 930–932.

    Article  CAS  Google Scholar 

  21. See e. g. Rothman, J., Kläui, M., Lopez-Diaz, L., Vaz, C. A. F., Bleloch, A., Bland, J. A. C., Cui Z. and Speaks, R. (2001) Observation of a Bi-Domain State and Nucleation Free Switching in Mesoscopic Ring Magnets. Phys. Rev. Lett. 86, 1098–1101. Kläui, M., Lopez-Diaz, L., Rothman, J., Vaz, C. A. F., Bland, J. A. C. and Cui, Z. (2002) Switching properties of free-standing epitaxial ring magnets, J. Magn. Magn. Mater. 240, 7-10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hanson, M., Kazakova, O. (2003). Submicron Size Particles of Magnetic Films and Multilayers. In: Liz-Marzán, L.M., Giersig, M. (eds) Low-Dimensional Systems: Theory, Preparation, and Some Applications. NATO Science Series, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0143-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0143-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1169-6

  • Online ISBN: 978-94-010-0143-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics