Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 91))

  • 329 Accesses

Abstract

Large arrays of well-aligned carbon nanotubes are first made possible on substrates in 1998 by plasma enhanced chemical deposition [1, 2] in which the diameter and length of each carbon nanotube are under control, but not the growth angle, location, nor the spacing between them. Soon after, the titled growth has been achieved by controlling the plasma direction using the same growth technique [3], Almost at the same time, the control of location and spacing of the nanotubes have been accomplished using electron beam (e- beam) lithography to pattern the nickel dots first at where they are needed and then to grow the carbon nanotubes using the same growth technique [4, 5]. However, e-beam is not possible to be commercialized for large scale. Therefore, alternative cheap and scalable technique is sought. Fortunately, the catalytic dots have been fabricated by electrochemistry and excellent aligned carbon nanotubes arrays have been grown [6]. Due to the nature of electrochemistry, the control on location of each nanotube is lacking. For applications that do not require the pre-determined location of each nanotube such as regular electron source, the arrays grown using the dots by electrochemistry is good enough. However, for applications that do require the pre-determined location of each nanotube such as microscopic probing tips, nanophotonics, etc., the control of location of each nanotube is crucial. Recently, we have been successful to grow large arrays of carbon nanotubes with diameter, length, location, and spacing under control by a simple and scalable technique, nanosphere lithography [7]. Since the very first report on large arrays of well-aligned carbon nanotubes, numerous papers have used the same or a slightly modified technique to grow aligned carbon nanotube arrays by either DC or microvave plasma CVD [818].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105–1107.

    Article  CAS  Google Scholar 

  2. Huang, Z. P., Xu, J.W., Ren, Z. F., Wang, J. H., Siegal, M. P., and Provencio, P. N. (1998) Growth of largescale well-aligned carbon nanotubes by plasma enhanced hot filament chemical vapor deposition, Appi Phys. Lett. 73, 3845–3847.

    Article  CAS  Google Scholar 

  3. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, D. Z., Wang, J. H., Calvet, L., Chen, J., Klemic, J. F., and Reed, M. A. (1999) Large arrays of well-aligned carbon nanotubes, AIP Conf. Proc. 486 (Electronic Properties of Novel Materials—Science and Technology of Molecular Nanostructures), 263–267.

    CAS  Google Scholar 

  4. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, D. Z., Wen, J. G., Wang, J. H., Calvet, L., Chen, J., Klemic, J. F., and Reed, M. A. (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot, Appi Phys. Lett. 75, 1086–1088.

    Article  CAS  Google Scholar 

  5. Wen, J. G., Huang, Z. P., Wang, D. Z., Chen, J. H., Yang, S. X., Ren, Z. F. Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F., Reed, M. A. (2001) Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films, J. Mater. Res. 16, 3246–3253.

    Article  CAS  Google Scholar 

  6. Tu, Y., Huang, Z. P., Wang, D. Z., Wen, J. G., Ren, Z. F. (2002) Growth of aligned carbon nanotubes with controlled site density, Appl. Phys. Lett. 80, 4018–4020.

    Article  CAS  Google Scholar 

  7. Kempa, K., Rybczynski, J., Huang, Z. P., Wu, P. F., Wang, D. Z., Giersig, M., Kimball, B., Sennett, M., Rao, D. V. G. L. N., Steeves, D., Carnahan, D. L., and Ren, Z. F. (in preparation).

    Google Scholar 

  8. Bower C, Zhu W, Jin SH, Zhou O. (2000) Plasma-induced alignment of carbon nanotubes, Appl. Phys. Lett., 77, 830–832.

    Article  CAS  Google Scholar 

  9. Cui H, Zhou O, Stoner BR (2000) Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, J. Appl. Phys. 88, 6072–6074.

    Article  CAS  Google Scholar 

  10. Baylor LR, Merkulov VI, Ellis ED, Guillorn MA, Lowndes DH, Melechko AV, Simpson ML, Whealton, JH (2002) Field emission from isolated individual vertically aligned carbon nanocones, J. Appl. Phys. 91, 4602–4606.

    Article  CAS  Google Scholar 

  11. Lee CJ, Lyu SC, Kim HW, Park CY, Yang CW (2002) Large-scale production of aligned carbon nanotubes by the vapor phase growth method, Chem. Phys. Lett. 359, 109–114.

    Article  CAS  Google Scholar 

  12. Merkulov VI, Melechko AV, Guillorn MA, Simpson ML, Lowndes DH, Whealton JH, Raridon RJ (2002) Controlled alignment of carbon nanofibers in a large-scale synthesis process, Appl. Phys. Lett. 80, 4816–4818.

    Article  CAS  Google Scholar 

  13. Wang SG, Wang JH, Qin Y (2002) Synthesis of carbon nanotubes by microwave plasma chemical vapor deposition at low temperature, Acta Chim. Sinica 60, 957–960.

    CAS  Google Scholar 

  14. Kim J, No K (2002) Growth of carbon nanotubes on the glass substrate for flat panel display applications, Int. J. Mod. Phys. B 16, 979–982.

    Article  CAS  Google Scholar 

  15. Zhang WD, Wen Y, Tjiu WC, Xu GQ, Gan LM (2002) Growth of vertically aligned carbon-nanotube array on large area of quartz plates by chemical vapor deposition, Appl. Phys. A-Mater. Sci. & Proc. 74, 419–422.

    Article  CAS  Google Scholar 

  16. Huczko A (2002) Synthesis of aligned carbon nanotubes, Appl. Phys. A-Mater. Sci. & Proc. 74, 617–638.

    Article  CAS  Google Scholar 

  17. Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, Pirio G, Legagneux P, Wyczisk F, Pribat D, Hasko DG (2002) Field emission from dense, sparse, and patterned arrays of carbon nanofibers, Appi Phys. Lett. 80, 2011–2013.

    Article  CAS  Google Scholar 

  18. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI (2001) Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appi Phys. 90, 5308–5317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ren, Z.F. et al. (2003). Growth and Characterizations of Well-Aligned Carbon Nanotubes. In: Liz-Marzán, L.M., Giersig, M. (eds) Low-Dimensional Systems: Theory, Preparation, and Some Applications. NATO Science Series, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0143-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0143-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1169-6

  • Online ISBN: 978-94-010-0143-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics