Why Mycoremediations Have not yet Come into Practice

  • V. Šašek
Chapter
Part of the NATO Science Series book series (NAIV, volume 19)

Abstract

Application of fungal technology (mycoremediation) for the cleanup of polluted soils holds promise since 1985 when the white rot fungus Phanerochaete chrysosporium was found to be able to metabolize a number of important environmental pollutants. This ability is generally attributed to the lignin-degrading enzymic system of the fungus. A similar degrading capability was later described with other white-rot fungal species. Most of the experiments were performed using liquid culture media. In soil conditions, where besides the fungus-degrading capability also other factors affect the process, our knowledge is rather limited. Many of the factors are similar to those generally influencing any soil bioremediation process (properties of the environmental matrix, bioavailability, temperature and other physical parameters, pollutant toxicity). Optimum performance of white rot fungal mycelium introduced into soil depends especially on its survival, colonization of the soil matrix and relation to autochthonous soil microflora. The development of fungal technology for decontamination of polluted soil has also been retarded by limited basic research knowledge; most of the results were obtained with the single fungal species Phanerochaete chrysosporium. However, the data were often generalized for all other white-rot fungal species without considering their physiological and ecological diversity. The goal of the presentation is the evaluation of the above aspects influencing the development of mycoremediation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaudhry, G.R., and Chapalamadugu, S. (1991) Biodegradation of halogenated organic compounds, Microbiol. Rev. 55, 59–79.Google Scholar
  2. 2.
    Morgan, P., and Watkinson, R.J. (1989) Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds, FEMS Microbiol. Rev. 63, 277–300.CrossRefGoogle Scholar
  3. 3.
    Providenti, M.A., Lee, H. and Trevors, J.T. (1993)Selected factors limiting the microbial degradation of recalcitrant compounds, J. Ind. Microbiol. 12, 379–395.CrossRefGoogle Scholar
  4. 4.
    Hammel, K.E. (1995) Organopollutant degradation by ligninolytic fungi, In: Young, L., Cerniglia, C. (Eds.). Microbial Transformation and Degradation of Toxic Chemicals. Wiley-Liss, New York, USA, pp. 331–336.Google Scholar
  5. 5.
    Cerniglia, C.E. (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future application in bioremediation, J. Industrial. Microbiol. Biotechnol. 19, 324–333.CrossRefGoogle Scholar
  6. 6.
    Field, J.A., de Jong, E., Costa, C.F., de Bont, J.A.M. (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics, Trends Biotechnol. 11, 44–49.CrossRefGoogle Scholar
  7. 7.
    Kohler, A., Jager A., Willerhausen, H., Graf, H. (1988): Extracellular ligninase of Phanerochaete chrysosporium Burdshall has no role in the degradation of DDT, Appl. Microbiol. Biotechnol. 29, 618–620.Google Scholar
  8. 8.
    Thomas, D.R., Carswell, K.S., and Georgiou, G. (1992) Mineralization of biphenyl and PCBs by the white rot fungusPhanerochaete chrysosporium, Biotechnol. Bioeng. 40, 1395–1402.CrossRefGoogle Scholar
  9. 9.
    Yadav, J.S., and Reddy, C.A. (1992) Non-involvement of lignin peroxidases and manganese peroxidases in 2,4,5-trichlorophenoxyacetic acid degradation by Phanerochaete chrysosporium, Biotechnol. Lett. 14, 1089–1092.CrossRefGoogle Scholar
  10. 10.
    Sack, U., and Gunther, T. (1993) Metabolism of PAH by fiingi and correlation with extracellular enzymatic activities, J. Basic Microbiol. 33, 269–277.CrossRefGoogle Scholar
  11. 11.
    Yadav, J.S., Quensen, J.F., Tiedje, J.M., Reddy, C.A. (1995) Degradation of polychlorinated biphenyl mixtures (Aroclor 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis, Appl. Environ. Microbiol. 61, 2560–2565.Google Scholar
  12. 12.
    Novotný, Č, Vyas, B.R.M., Erbanová, P., Kubátová, A., Špašek, V. (1997) Removal of PCBs by various white rot fungi in liquid culture, Folia Microbiol. 42, 136–140.CrossRefGoogle Scholar
  13. 13.
    Bogan, B.W., Lamar, R.T., Hammel, K.E. (1996) Fluorene oxidation in vitro by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. App. Environ. Microbiol. 62, 1788–1792.Google Scholar
  14. 14.
    Beaudette, L.A., Davies, S., Fedorak, P.M., Ward, O.P., and Pickard, M.A. (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyls congeners in cultures of white rot fungi, Appl. Environ. Microbiol. 64, 2020–2025.Google Scholar
  15. 15.
    Lamar, R.T., Glaser, J.A., and Kirk, T.K. (1990) Fate of pentachlorophenol (PCP) in sterile soil inoculated with white-rot basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP, Soil. Biol. Biochem. 22, 433–440.CrossRefGoogle Scholar
  16. 16.
    Lamar, R.T., Davis, M.W., Dietrich, D.M., and Glaser, J.A. (1994) Treatment of a pentachlorophenol-and creosote-contaminated soil using the lignin degrading fungus Phanerochaete sordida: a field demonstration, Soil Biol. Biochem. 26, 1603–1611.CrossRefGoogle Scholar
  17. 17.
    Aust, S.T., Tien, M., and Bumpus, J.A. (1986) Process for the degradation of environmentally persistent organic compounds, Eur. Pat. Appl. No. 86102067.5, 18.02.86.Google Scholar
  18. 18.
    Volfová O., Šašek V., Krumphanzl V., Přikryl J., Erbanová P., Pilátová J. (1995): Biodegradation of chlorinated aromatic compounds and hydrocarbons, Czech. Pat. No. 280091, 29.8.1995.Google Scholar
  19. 19.
    Aust, S.T., and Benson, J.T. (1993) The fungus among us: use of white rot fungi to biodegrade environmental pollutants, Environ. Health Prospect. 101, 232–233.CrossRefGoogle Scholar
  20. 20.
    May, R., Schröder, P., and Sandermann, H., Jr. (1997) Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium, Environ. Sci. Technol. 31, 2626–2633.CrossRefGoogle Scholar
  21. 21.
    Bumpus, J.A., Tien, M., Wright, D., and Aust, S.D. (1985) Oxidation of persistent environmental pollutants by a white rot fungus, Science 228, 1434–1436.CrossRefGoogle Scholar
  22. 22.
    Eaton, D.C. (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus, Enzyme Microb. Technol. 7, 194–196.Google Scholar
  23. 23.
    Tien, M., and Kirk, T.K. (1988) Lignin peroxidase of Phanerochaete chrysosporium, Methods Enzymol. 161, 238–249.CrossRefGoogle Scholar
  24. 24.
    Burdshall, H.H., and Eslyn, W.E. (1974) A new Phanerochaete with a Chrysosporium imperfect state, Mycotaxon 1 , 123–133.Google Scholar
  25. 25.
    Dhawale, S.W., Dhawale, S.S., and Dean-Ross, D. (1992) Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as non-ligninolytic conditions, Appl. Environ. Microbiol. 58, 3000–3006.Google Scholar
  26. 26.
    Mileski, G., Bumpus, J.A., Jurek, M., and Aust, S.D. (1988) Biodegradation of pentachlorophenol by the white-rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 54, 2885–2889.Google Scholar
  27. 27.
    Kang, G., and Stevens, D.K. (1994) Degradation of pentachlorophenol in bench scale bioreactors using the white rot fungusPhanerochaete chrysosporium, Hazard Waste Hazard Mat. 11, 397–410.CrossRefGoogle Scholar
  28. 28.
    Alleman, B.C., Logan, B.E., and Gilbertson R.L. (1995) Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors, Wat. Res. 29, 61–67.CrossRefGoogle Scholar
  29. 29.
    Aitken, B.S., and Logan, B.E. (1996) Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media, Biodegradation 7, 175–182.CrossRefGoogle Scholar
  30. 30.
    Armenante, P.M., Pal, N., and Lewandowski, G. (1994) Role of mycelium and extracellular protein in the biodegradation of 2,4,6-trichlorophenol byPhanerochaete chrysosporium, Appl. Environ. Microbiol. 60, 1711–1718.Google Scholar
  31. 31.
    Valli, K., and Gold, M.H. (1991) Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium, J. Bacteriol. 173, 345–352.Google Scholar
  32. 32.
    Joshi, D.K., and Gold, M.H. (1993) Degradation of 2,4, 5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59, 1779–1785.Google Scholar
  33. 33.
    Hammel, K.E., and Tardone, PJ. (1988) The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidase, Biochemistry 27, 6563–6568.CrossRefGoogle Scholar
  34. 34.
    Dietrich D., Hickey, W.J., and Lamar, R. (1995) Degradation of 4,4’-dichlorobiphenyl, 4,3’,4,4’-tetrachlorobiphenyl, and 2,2’,4,4’,5,5-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 61, 3904–39Google Scholar
  35. 35.
    Krčmář, P., and Ulrich, R. (1998) Degradation of polychlorinated biphenyl mixture by the lignin-degrading fungus Phanerochaete chrysosporium, Folia Microbiol. 43, 79–84.CrossRefGoogle Scholar
  36. 36.
    Krčmář, P., Kubátová, A.,Votruba, J., Erbanová, P., Novotní, Č., and Šašek, V. (1999) Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor, World J. Microbiol. Biotechnol 15, 237–242.CrossRefGoogle Scholar
  37. 37.
    Valli, K., Warishi, H., and Gold, M.H. (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignindegrading basidiomycete Phanerochaete chrysosporium, J. Bacteriol. 174, 2131–2137.Google Scholar
  38. 38.
    Haemmerli, S.D., Leisola, M.S.A., Sanglard, D., and Fiechter, A. (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase, J. Biol. Chem. 261, 6900–6903.Google Scholar
  39. 39.
    Hammel, K.E., Kalyanaraman, B., and Kirk, T.K. (1986) Oxidation of polycyelic aromatic hydrocarbons and dibenzo[p ]-dioxins by Phanerochaete chrysosporium, J. Biol. Chem. 261, 16948–16952.Google Scholar
  40. 40.
    Moen, M.A., and Hammel, K.E. (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus, Appl. Environ. Microbiol. 60, 1956–1961.Google Scholar
  41. 41.
    Field, J.A., Vledder, R.H., van Zelst, J.G., and Rulkens, W.H. (1996) The tolerance of lignin peroxidase and manganese dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solventwater mixtures, Enzyme Microbiol. Technol. 18, 300–308.CrossRefGoogle Scholar
  42. 42.
    Sack, U., Hofrichter, M., Fritsche, W. (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii, FEMS Microbiol. Lett. 152, 227–234.CrossRefGoogle Scholar
  43. 43.
    Johannes, C., Majcherczyk, A., and Huttermann, A. (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds, Appl. Microbiol. Biotechnol. 46, 313–317.CrossRefGoogle Scholar
  44. 44.
    Collins, P.J.J., Kotterman, M.J.J., Field, J.A., and Dobson, A.D.V. (1996) Oxidation of anthracene and benzo[a]pyrene by laccase from Trametes versicolor, Appl. Environ. Microbiol. 62, 4563–4567.Google Scholar
  45. 45.
    Hammel, K.E., Green, B., and Gai, W.Z. (1991) Ring fission of anthracene by a eukaryote, Proc. Natl. Acad. Sci. 88, 10605–10608.CrossRefGoogle Scholar
  46. 46.
    Bogan, B.W., and Lamar, R.T. (1995) One-electron oxidation in the degradation of creosote polycyelic aromatic hydrocarbons by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 61, 2631–2635.Google Scholar
  47. 47.
    Sutherland, J.B., Selby, A.L., Freeman, J.P., Evans, F.E., and Cerniglia, C.E. (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 57, 3310–3316.Google Scholar
  48. 48.
    Bezalel, L., Hadar, Y., Freeman, J.P., and Cerniglia, C.E. (1996a) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus, Appl. Environ. Microbiol. 62, 2554–25Google Scholar
  49. 49.
    Bezalel, L., Hadar, Y., Fu, P.P., Freeman, J.P., and Cerniglia, C.E. (1996b) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus, Appl. Environ. Microbiol. 62, 2547–2553.Google Scholar
  50. 50.
    Bezalel, L., Hadar, Y., and Cerniglia, C.E. (1996c) Mineralization of polycyelic aromatic hydrocarbons by the white rot fongus Pleurotus ostreatus, Appl. Environ. Microbiol. 62, 292–295.Google Scholar
  51. 51.
    Masaphy, S., Levanon, D., Henis, Y., Venkateswarlu, K., and Kelly, S.L. (1996) Evidence for cytochrome P450 and P450-mediated benzo[a]pyrene hydroxylation in the white rot fongus Phanerochaete chrysosporium, FEMS Microbiol. Lett. 135, 51–55.CrossRefGoogle Scholar
  52. 52.
    Bezalel, L., Hadar, Y., and Cerniglia, C.E. (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fongus Pleurotus ostreatus, Appl. Environ. Microbiol. 63, 2495–2501.Google Scholar
  53. 53.
    Cerniglia, C.E., Sutherland, J.B., and Crow, S.A. (1992) Fungal metabolism of aromatic hydrocarbons. In: G. Winkelmann (ed.), Microbial Degradation of Natural Products. WCH Press, Weinheim, pp. 193–217.Google Scholar
  54. 54.
    Bumpus, J.A. (1989) Biodegradation of polycyelic aromatic hydrocarbons by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 55, 154–158.Google Scholar
  55. 55.
    Sanglard, D.S., Leisola, A., and Fiechter, A. (1986) Role of extracellular ligninases in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium, Enzyme Microb. Technol. 8, 209–2CrossRefGoogle Scholar
  56. 56.
    Hammel, K.E., Gai, W.Z., Green, B., Moen, M.A. (1992) Oxidative degradation of phenanthrene by the ligninolytic fongus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 58, 1832–1838.Google Scholar
  57. 57.
    Vyas, B.R.M., Bakowski, S., Sasek, V., and Matucha, M. (1994) Degradation of anthracene by selected white rot fungi, FEMS Microbiol. Ecol. 14, 65–70.CrossRefGoogle Scholar
  58. 58.
    Yadav, J.S., and Reddy, C.A. (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59, 756–762.Google Scholar
  59. 59.
    Yadav, J.S., Walace, R.E. and Reddy, C.A. (1995) Mineralization of mono-and dichlorobenzenes and simultaneous degradation of chloro-and methyl-substituted benzenes by the white rot fongus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 61, 667–680.Google Scholar
  60. 60.
    Glenn, J.K., and Gold, M.H. (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium, Appl. Environ. Microbiol. 45, 1741–1747.Google Scholar
  61. 61.
    Glenn, J.K., and Gold, M.H. (1985) Purification and characterization of an extracellular Mn (III)-dependent peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium, Arch. Biochem. Biophys. 242, 329–341.CrossRefGoogle Scholar
  62. 62.
    Kuwahara, M., Glenn, J.K., Morgan, M., and Gold, M.H. (1984) Separation and characterization of two extracellular H2O2-dependent peroxidases from ligninolytic cultures of Phanerochaete chrysosporium, FEBS Lett. 169, 247–250.CrossRefGoogle Scholar
  63. 63.
    Paszcynski, A., Pasti, M.B., Goszczynski, S., Crawford, D.L., and Crawford, R.L. (1991) New approach to improve degradation of recalcitrant azo dyes by Streptomyces spp. and Phanerochaete chrysosporium, Enzyme Microb. Technol. 13, 378–384.CrossRefGoogle Scholar
  64. 64.
    Field, J.A., de Jong, E., Feijoo-Costa, G., and de Bont, J.A.M. (1993) Screening for ligninolytic fungi applicable to biodegradation of xenobiotics, Trends in Biotechnol, TIBTECH February 1993, 11, 44–49.CrossRefGoogle Scholar
  65. 65.
    Bumpus, J.A., and Brock, B.J. (1988) Biodegradation of crystal violet by the white-rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 54, 1140–1150.Google Scholar
  66. 66.
    Crips, C., Bumpus, J.A., and Aust, S.A. (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 56, 1114–1118.Google Scholar
  67. 67.
    Spadaro, J.T., Gold, M.H., and Renganathan, V. (1992) Decolorization of azo dyes by the Iignin-degrading fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 58, 2397–2401.Google Scholar
  68. 68.
    Ollikka, P., Alhonnaki, K., Leppaen, V., Glumoff, T., Raiola, T., and Suonimane, L. (1993) Decolorization of azo, triphenyl methane, heterocyclic and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59, 4010–4016.Google Scholar
  69. 69.
    Paszczynski, A., Pasti-Grigsby, M.B., Goszczynski, S., Crawford, R.L., and Crawford, D.L. (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus, Appl. Environ. Microbiol. 58, 3598–3604.Google Scholar
  70. 70.
    Paszczynski, A., and Crawford, R.L. (1991) Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: Involvement of veratryl alcohol, Biochem. Biophys. Res. Commun. 178, 1056–1063.CrossRefGoogle Scholar
  71. 71.
    Goszczynski, S., Paszczynski, A., Pasti-Grigsby, M.B., Crawford, R.L., and Crawford, D.L. (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus, J. Bacteriol. 176, 1339–1347.Google Scholar
  72. 72.
    Paszczynski, A., Goszczynski, S., Crawford, R.L., Crawford, D.L. (1997) Biodegradation of diazo dyes by Phanerochaete chrysosporium, pp. 505–510 in In Situ and On-Site Bioremediation 4, 2, Battele Press, Columbus — Richland.Google Scholar
  73. 73.
    Young, L., and Yu, J. (1997) Ligninase catalysed decolorization of synthetic dyes, Wat. Res. 31, 1187–1193.CrossRefGoogle Scholar
  74. 74.
    Paszczynski, A., and Crawford, R.L. (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium, Biotechnoi. Prog. 11, 368–379.CrossRefGoogle Scholar
  75. 75.
    Swamy, J., and Ramsay, J.A. (1999) The evaluation of white rot fungi in the decoloration of textile dyes, Enzyme Microb. Technol. 24, 130–137.CrossRefGoogle Scholar
  76. 76.
    Rodrigues, E., Pickard, M.A., and Vazgues-Duhalt, R. (1999) Industrial dye decolorization by laccases from ligninolytic fungi, Current Microbiol. 38, 27–32.CrossRefGoogle Scholar
  77. 77.
    Blondeau, R. (1989) Biodegradation of natural and synthetic humid acids by the white rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 55, 1282–1285.Google Scholar
  78. 78.
    Fukai, H., Presnell, T.L., Joyce, T.W., and Chang, H.M. (1992) Dechlorination and detoxification of bleach plant effluent by Phanerochaete chrysosporium, J. Biotechnoi. 24, 267–275.CrossRefGoogle Scholar
  79. 79.
    Joyce, T.W., Chang, H., Campbell, A.G., Gerrard, E.D., and Kirk, T.K. (1984) A continuous biological process to decolorize bleach plant effluents, Biotechnoi. Adv. 2, 301–308.CrossRefGoogle Scholar
  80. 80.
    Michel, F.C., Jr., Dass, S.B., Grulke, E.A., and Reddy, C.A. (1991) Role of manganese peroxidases and lignin peroxidases in decolorization of kraft bleach plant effluent, Appl. Environ. Microbiol. 57, 2368–2375.Google Scholar
  81. 81.
    Garg, S.K., and Modi, D.R. (1999) Decolorization of pulp-paper mill effluents by white rot fungi, Critic. Rev. Biotechnoi. 19, 85–112.CrossRefGoogle Scholar
  82. 82.
    Ritter, D., Jaklin-Farcher, S., Messner, K., and Stachelberger, H. (1990) Polymerization and depolymerization of lignosulfonates by Phanerochaete chrysosporium immobilized on foam, J. Biotechnoi. 13, 229–241.CrossRefGoogle Scholar
  83. 83.
    Guimaraes, C., Bento, L.S., and Mota, M. (1999) Biodegradation of colorants in rafmery effluents — Potential use of the fungus Phanerochaete chrysosporium, Internat. Sugar J. 101, 246.Google Scholar
  84. 84.
    Sayadi, S., and Ellouz, R. (1992) Decolourization of olive mill waste-waters by Phanerochaete chrysosporium: involvement of the lignin degrading system, Appl. Microbiol. Biotechnoi. 37, 813–817.Google Scholar
  85. 85.
    Sayadi, S., and Ellouz, R. (1995) Role of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters, Appl. Environ. Microbiol. 61, 1098–1103.Google Scholar
  86. 86.
    Fernando, T., Bumpus, J.A., and Aust, S.D. (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 56, 1666–1671.Google Scholar
  87. 87.
    Bumpus, J.A., and Tatarko, M. (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidase, Curr. Microbiol. 28, 185–190.CrossRefGoogle Scholar
  88. 88.
    Michels, J., and Gottshai, G. (1994) Inhibition of lignin peroxidase by hydroxyl-amine-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene, Appl. Environ. Microbiol. 60, 187–194.Google Scholar
  89. 89.
    Spiker, J.K., Crawford, D.L., and Crawford, R.L.(1992) Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soil by the white rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 58, 199–202.Google Scholar
  90. 90.
    Hawari, J., Halasz, A., Beaudet, S., Paquet, L., Ampleman, G., and Thiboutot, S. (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated culture, Appl. Environ. Microbiol. 65, 2977–2986.Google Scholar
  91. 91.
    Sublette, K.L., Ganapathy, E.V., and Schwartz, S. (1992) Degradation of munitions wastes by Phanerochaete chrysosporium, App.Biochem.Biotechnol. 34/35, 709–723.CrossRefGoogle Scholar
  92. 92.
    Servent, D., Ducrocq, C., Henry, Y., Guissani, A., and Lenfant, M. (1991) Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation, Biochem. Biophys. Acta 1074: 320–325.CrossRefGoogle Scholar
  93. 93.
    Valli, K., Brock, B.J., Joshi, D.K., and Gold, M.H. (1992) Degradation of 2,4-dinitrotoluene by the lignindegrading fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 58, 221–228.Google Scholar
  94. 94.
    Ryan, T.P., and Bumpus, J.A. (1989) Biodegradation of 2,4,5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium, Appl. Microbiol. Biotechnol. 31, 302–307.CrossRefGoogle Scholar
  95. 95.
    Yadav, J.S., and Reddy C.A. (1993) Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium, Appl. Environ. Microbiol. 59, 2904–2908.Google Scholar
  96. 96.
    Kennedy, D.W., Aust, S.D., and Bumpus, J.A. (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium(BKM-F-1767), Appl. Environ. Microbiol. 56, 2347–2353.Google Scholar
  97. 97.
    Fratila-Apachitei, L.E., Hirst, J.A., Siebel, M.A., and Gijzen, H.J. (1999) Diuron degradation by Phanerochaete chrysosporium BKM-F-1767 in synthetic and natural media, Biotechnol. Lett. 21, 147–154.CrossRefGoogle Scholar
  98. 98.
    Bumpus, J.A., and Aust, S.D. (1987) Biodegradation of DDT (l,l,l-trichloro-2,2-bis-(4-chlorophenyl) ethane by the white rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 53, 2001–2008.Google Scholar
  99. 99.
    Golovleva, L.A., and Leontievskii, A.A. (1998) Ligninolytic activity of wood-decaying fungi, Microbiology 67, 581–587.Google Scholar
  100. 100.
    Gilbertson, R.L., and Ryvarden, L. (1986) North American Polypores. Vol. 1, Fungiflora, Oslo, Norway.Google Scholar
  101. 101.
    Field, J.A., de Jong, E., Costa, G.F., and de Bont, J.A.M. (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi, Appl. Environ. Microbiol. 58, 2219–2226.Google Scholar
  102. 102.
    Morgan P., Lewis, S.T., and Watkinson, R.J. (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds, Appl. Microbiol. Biotechnol. 14, 691–696.Google Scholar
  103. 103.
    Sack, U., Hofrichter, M., and Fritsche, W. (1997) Degradation of phenanthrene and pyrene by Nematoloma frowardii, J. Basic Microbiol. 37, 287–293.CrossRefGoogle Scholar
  104. 104.
    Sack U., and Fritsche, W. (1997) Enhancement of pyrene mineralization in soil by wood-decaying fungi, FEMS Microbiol. Ecol. 22, 77–83.CrossRefGoogle Scholar
  105. 105.
    Sack, U., Heinze, T.M., Deck, J., Cerniglia, C.E., Martens, R., Zadrazil, F., Fritsche, W. (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi, Appl. Environ. Microbiol. 63, 3919–3925.Google Scholar
  106. 106.
    Gramss, G., Kirsche, B., Voigt, K.-D., Gunther, Th., and Fritsche, W. (1999) Conversion rates of five polycyclic aromatic hydrocarbons in the liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes, Mycol. Res. 103, 1009–1018.CrossRefGoogle Scholar
  107. 107.
    Martens, R., and Zadrazil, F. (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil, Folia Microbiol. 43: 97–103.CrossRefGoogle Scholar
  108. 108.
    Khadrani, A., Siegle-Murandi, F., Steiman, R., and Vroumsia, T. (1999) Degradation of three phenylurea herbicides (chlortorulon, isoproturon and diuron) by micromycetes isolated from soil, Chemosphere 38, 3041–3050.CrossRefGoogle Scholar
  109. 109.
    Colombo, J.C., Cabello, M., and Arambarri, A.M. (1996) Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and ligninolytic fungi, Environ. Poll. 94, 355–362.CrossRefGoogle Scholar
  110. 110.
    Donnelly, K.C., Chen, J.C., Huebner, H.J., Brown, K.W., Autenrieth, R.L., and Bonner, J.S. (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture, Environ. Toxicol. Chem. 16, 1105–1110.CrossRefGoogle Scholar
  111. 111.
    Alleman, B.C., Logan, B.E., and Gilbertson, R.L. (1992) Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose, Appl. Environ. Microbiol. 58, 4048–4050.Google Scholar
  112. 112.
    Šašek, V., Novotní, Č., and Vampola, P. (1998) Screening for efficient fungal degraders by decolorization, Czech Mycol. 50, 303–311.Google Scholar
  113. 113.
    Song, H.-G. (1999) Comparison of pyrene biodegradation by white rot fungi, World J. Microbiol. Biotechnol. 15, 669–672.CrossRefGoogle Scholar
  114. 114.
    Garon, D., Krivobok, F., Siegle-Murandi, F. (2000) Fungal degradation of fluorene, Chemosphere 40, 91–97.CrossRefGoogle Scholar
  115. 115.
    Braun-Lullemann, A., Majcherczyk, A., Huttermann A. (1997) Degradation of styrene by white-rot fungi, Appl. Microbiol, Boitechnol, 47, 150–155.CrossRefGoogle Scholar
  116. 116.
    Deguchi, T., Kakezawa, M., and Nishida, T. (1997) Nylon biodegradation by lignin degrading fungi, Appl. Environ. Microbiol. 63, 329–331.Google Scholar
  117. 117.
    Majcherczyk, A., Braun-Lullemann, A., and Huttermann, A. (1990) Biofiltration of a polluted air by a complex filter based on white-rot fungi growing on lignocellulosic substrates. In: M.P. Coughlan, and M.T. Amaral Collaco (eds.) Advances of Biological Treatment of Lignocellulosic Materials. Elsevier Applied Science, London, pp. 233–329.Google Scholar
  118. 118.
    Lamar, R.T., Larsen, M.J, and Kirk, T.K. (1990) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp, Appl. Environ. Microbiol. 56, 3519–3526.Google Scholar
  119. 119.
    Lamar, R.T., and Dietrich, D.M. (1990) In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp, Appl. Environ. Microbiol. 56, 3093–3100.Google Scholar
  120. 120.
    Takada, S., Nakamura, M., Matsueda, T., Kondo, R., and Sakai, K. (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida XK-624, Appl. Environ. Microbiol. 62, 4323–4328.Google Scholar
  121. 121.
    Bogan, B.W., and Lamar, R.T. (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes, Appl. Environ. Microbiol. 62, 1597–1603.Google Scholar
  122. 122.
    Pérez, J., Saez, L., de la Rubia, T., and Martínez, J. (1997) Phanerochaete flavido-alba ligninolytic activities and decolorization of partially bio-depurated paper mill wastes, Wat. Res. 31, 495–502.CrossRefGoogle Scholar
  123. 123.
    Pérez, J., de la Rubia, T., Hamman, B., and Martinez, J. (1998) Phanerochaete flavido-alba laccase induction and modification of manganese peroxidase isoenzyme pattern in decolorized olive oil mill wastewaters, Appl. Environ. Microbiol. 64, 2726–2729.Google Scholar
  124. 124.
    Lamar, R.T., Evans, J.W., and Glaser. J.A. (1993) Solid-phase treatment of a pentachlorophenolcontaminated soil using lignin-degrading fungi, Environ. Sci. Technol. 27, 2566–2571.CrossRefGoogle Scholar
  125. 125.
    Roy-Arcand, L., and Archibald, F.S. (19991) Direct dechlorination of chlorophenolic compounds by laccase from Trametes (Coriolus) versicolor, Enzyme Microb. Technol. 13, 194–203.CrossRefGoogle Scholar
  126. 126.
    limura, Y., Hartikainen, P., and Tatsumi, K. (1996) Dechlorination of tetrachloroguaiacol by laccase of white rot basidiomycete Coriolus versocolor, Appl. Microbiol. Biotechnol. 45, 434–439.CrossRefGoogle Scholar
  127. 127.
    Johannes, C., Majcherczyk, A., and Huttermann, A. (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system, J. Biotechnol. 61, 151–156.CrossRefGoogle Scholar
  128. 128.
    Majcherczyk, A., Johannes, C., Huttermann, A. (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor, Enzyme Microbial Technol. 22, 335–341.CrossRefGoogle Scholar
  129. 129.
    Majcherczyk, A., Johannes, C., and Hutterman, A. (1999) Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by the 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) cation radical and dication, Appl. Microbiol. Biotechnol. 51, 267–276.CrossRefGoogle Scholar
  130. 130.
    Ricotta, A., Unz, R.F., and Bollag, J.-M. (1996) Role of laccase in degradation of pentachlorophenols. Bull. Environ. Contam. Toxicol. 57, 560–567.CrossRefGoogle Scholar
  131. 131.
    Grey, R., Hofer, C., and Schlosser, D. (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1,4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity, J. Basic Microbiol. 38, 371–382.CrossRefGoogle Scholar
  132. 132.
    Wang, Y., and Yu, J. (1998) Adsorption and degradation od synthetic dyes on the mycelium of Trametes versicolor, Wat. Sci. Tech. 38, 233–238.CrossRefGoogle Scholar
  133. 133.
    Swamy, J., and Ramsay, J.A. (1999) Effect of glucose and NH4+ concentrations on sesquential dye decolorization by Trametes versicolor, Enzyme Microbial Technol. 25, 278–284.CrossRefGoogle Scholar
  134. 134.
    Tuomela, M., Lyytikainen, M., Oivanen, P., and Hatakka, A. (1999) Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor, Soil Biol. Biochem. 31, 65–74.CrossRefGoogle Scholar
  135. 135.
    Novorný, Č., Erbanová, P., Erbanovák, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J., and Zadražil, F. (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fiingi, Biodegradation 10, 159–168.CrossRefGoogle Scholar
  136. 136.
    Vyas, B.R.M., Šašek, V., Matucha, M., and Bubner, M. (1994) Degradation of 3,3, 4,4-tetrachlorobiphenyl by selected white rot fungi, Chemosphere 28, 1127–1134.CrossRefGoogle Scholar
  137. 137.
    in der Wiesche, C., Martens, R., and Zadrazil, F (1995).: Two-step degradation of pyrene by white-rot fungi and soil microorganisms, Appl. Microbiol. Biotechnol. 46, 653–659.CrossRefGoogle Scholar
  138. 138.
    Wolter, M., Zadrazil, F., Martens, R., and Bahadir, M. (1997) Degradation of eight highly condensed aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate, Appl. Microbiol. Biotechnol. 48, 398–404.CrossRefGoogle Scholar
  139. 139.
    Schutzendubel, A., Majcherczyk, A., Johannes, C., and Huttermann, A. (1999) Degradation of fluorene, anthracene, phenanthrene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta, Internat. Biodeter. Biodegrad. 43, 93–100.CrossRefGoogle Scholar
  140. 140.
    Kotterman, M.J.J., Rietberg, H.-J., Hage, A., and J.A. Field (1998) Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants, Biotechnol. Bioeng. 57, 221–227.CrossRefGoogle Scholar
  141. 141.
    Field, J.A., Boelsma, F., Baten, H., and Rulkens, W.H (1995). Oxidation of anthracene in water/solvent mixtures by the white-rot fungus Bjerkandera sp. strain BOS55, Appl. Microbiol. Biotechnol. 44, 234–240.CrossRefGoogle Scholar
  142. 142.
    Kotterman, M.J.J., Vis, E.H., and Field, J.A. (1998) Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora, Appl. Environ. Microbiol. 64, 2853–2858.Google Scholar
  143. 143.
    Field, J.A., Baten, H., Boelsma, F., and Rulkens, W.H. (1996) Biological elimination of polycyclic aromatic hydrocarbons in solvent extracts of polluted soil by the white rot fungus, Bjerkandera sp. strain BOS55, Environ. Technol. 17, 317–323.CrossRefGoogle Scholar
  144. 144.
    Scheibner, K., Hofrichter, M., Herre, A., Michels, J., and Fritsche, W. (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene, Appl. Microbiol. Biotechnol. 47, 452–457.CrossRefGoogle Scholar
  145. 145.
    Scheibner, K., Hofrichter, M., and Fritsche, W. (1997) Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white rot fungus Nematoloma frowardii, Biotechnol. Lett. 19, 835–839.CrossRefGoogle Scholar
  146. 146.
    Scheibner, K., and Hofrichter, M. (1998) Conversion of aminonitrotoluenes by fungal manganese peroxidase, J. Basic Microbiol. 38, 51–59.CrossRefGoogle Scholar
  147. 147.
    Hofrichter, M., Scheibner, K., Schneegass, I., Ziegenhagen, D., and Fritsche, W. (1998) Mineralization of synthetic humic substances by manganese peroxidase from the white-rot fungus Nematoloma frowardii, Appl. Microbiol. Biotechnol 49, 584–588.CrossRefGoogle Scholar
  148. 148.
    Wunch, K.G., Feibelman, T., and Bennet, J.W. (1997) Screening for fungi capable of biodegrading benzo[a]pyrene, Appl. Microbiol. Biotechnol. 47, 620–624.CrossRefGoogle Scholar
  149. 149.
    Wunch, K.G., Alworth, W.L., and Bennet, J.W. (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site, Microbiol. Res. 154, 75–79.CrossRefGoogle Scholar
  150. 150.
    Van Aken, B., Skubisz, K., Naveau, H., and Agathos, S.N. (1997) Biodegradation of 2,4,6-trinitrotoluene by the white-rot basidiomycete Phlebia radiata, Biotechnol. Lett. 19, 813–817.CrossRefGoogle Scholar
  151. 151.
    Van Aken, B., Godefroid, L.M., Peres, C.M., Naveau, H., and Agathos, S.N. (1999) Mineralization of 14C-U.ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese-dependent peroxidase of the white-rot basidiomycete Phlebia radiata, J. Biotechnol. 68, 159–169.CrossRefGoogle Scholar
  152. 152.
    Seto, M., Nishibori, K., Masai, E., Fukuda, M., and Ohdaira, Y. (1999) Degradation of polychlorinated biphenyls by a “Maiake” mushroom, Grifola frondosa, Biotechnol. Lett. 21, 27–31.CrossRefGoogle Scholar
  153. 153.
    Rama, R., Mougin, C., Boyer, F.-D., Kollmann, A., Malosse, C., and Sigoillot, J.-C. (1998) Biotransformation of benzo[a]pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus, Biotechnol. Lett. 20, 1101–1104.CrossRefGoogle Scholar
  154. 154.
    Pickard, M.A., Roman, R., Tinoco, R., and Vazquez-Duhalt, R. (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase, Appl Environ. Microbiol. 65, 3805–3809.Google Scholar
  155. 155.
    Bhatt, M., Patel, M., Rawal, B., Novotný, Č, Molitoris, H.P., and Šašek, V. (1999) Biological decolorization of the synthetic dye RBBR in contaminated soil, World J. Microbiol Biotechnol. 16, 195–198.CrossRefGoogle Scholar
  156. 156.
    Šašek, V., Novotny, C., Erbanová, P., Bhatt, M., Cajthaml, T., Kubátová, A., Dosoretz, C., Rawal, B., and Molitoris, H.P. (1999) Selection of ligninolytic fungi for biodegradation of organopollutants, in A. Leason and B.C. Alleman (eds.), Phytoremediation and Innovative Strategies for Specialized Remedial Applications,The Fifth International In Situ and On-Site Bioremediation Symposium, San Diego, California, April 19-22, 1999, Battelle Press, Columbus, Richland, pp. 69–74.Google Scholar
  157. 157.
    Radtke, C., Cook, W.S., and Anderson, A. (1994) Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soil, Appl. Microbiol. Biotechnol 41, 274–280.CrossRefGoogle Scholar
  158. 158.
    Loske, D., Hüttermann, A. Majcherzyk, A., Zadrazil, F., and Lorsen, H. (1990) Use of white rot fungi for the clean-up of contaminated sites, in M.P. Coughlan and M.T.A. Collaco (eds.), Advances of Biological Treatment of Lignocellulosic Materials, Elsevier Applied Science, London, pp. 311–321.Google Scholar
  159. 159.
    Eschenbach, A., Kästner, M., Wienberg, R., and Mahro, B. (1995) Microbial PAH degradation in soil material from a contaminated site — mass balance experiments with Pleurotus ostreatus and different 14C-PAH, in W.J. van der Bring, R. Bosnian, and F. Arendt, (eds.), Contaminated Soil’ 95. Springer Science+Business Media Dordrecht, the Netherlands, pp. 377–378.CrossRefGoogle Scholar
  160. 160.
    Qiu, X.J., and McFarlan, M.J. (1991) Bound residue formation in PAH contaminated soil composting using Phanerochaete chrysosporium, Hazard. Waste Hazard. Mater. 8, 115–126.CrossRefGoogle Scholar
  161. 161.
    McFarlan, M.J., Qiu, X.J., Sims, J.L., Randolph, M.E., and Sims, R.C. (1992) Remediation of petroleum impacted soils infungal compost bioreactors, Water Sci, Technol. 25, 197–206.Google Scholar
  162. 162.
    McFarlan, M.J., and Qiu, X.J. (1995) Removal of benzo[a]pyrene in soil composting systems amended with the white rot fungus Phanerochaete chrysosporium, J. Hazard. Mater. 42, 61–70.CrossRefGoogle Scholar
  163. 163.
    Eggen, T., and Majcherczyk A, (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotus ostreatus, Internat. Biodet. Biodegrad. 41, 111–117.CrossRefGoogle Scholar
  164. 164.
    Bogan, B.W., Lamar, R.T., Burgos, W.D., and Tien, M, (1999) Extent of humifiation of anthracene, fluoranthene, and benzo[a]pyrene by Pleurotus ostreatus durin growth in PAH-contaminated soil, Lett. Appl. Microbiol. 28, 250–254.CrossRefGoogle Scholar
  165. 165.
    Ruttimann-Johnson, C., and Lamar, R.T. (1997) Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi, Soil Biol. Biochem. 29, 1143–1148.CrossRefGoogle Scholar
  166. 166.
    Dawel, G., Kastner, M, Michels, J., Poppitz, W., Gunther, W., and Pritsche, W. (1997) Structure of the Iaccase-mediated product of coupling of 2,4-diamino-6-nitrotoluene to guiacol, a model for coupling of 2,4,6-trinitrotoluene metabolites to a humic organic soil matrix, Appl. Environ. Microbiol. 63, 2560–2565.Google Scholar
  167. 167.
    Verstraete, W., and Devliegher, W. (1996) Formation of non-bioavailable organic residues: Perspectives for site remediation, Biodegradation 7: 471–485.CrossRefGoogle Scholar
  168. 168.
    Mouin, C., Pericaud, C., Dubroca, J., and Asther, M. (1997) Enhanced mineralization of lindane in soil supplemented with the white rot basidiomycete Phanerochaete chrysosporium, Soil. Biol. Biochem. 29, 1321–1324.CrossRefGoogle Scholar
  169. 169.
    Entry, JA., Donnelly, P.K., and Emmingham, W.H. (1996) Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darken, Appl. Soil. Ecol. 3, 85–90.CrossRefGoogle Scholar
  170. 170.
    George, E.J., and Neufeld, R.D. (1988) Degradation of fluorene in soil by fungus Phanerochaete chrysosporium, Biotechnol. Bioeng. 33, 1306–1310.CrossRefGoogle Scholar
  171. 171.
    Šašek, V., Volfová, O., Erbanová, P., Vyas, B.R.M., and Matucha, M. (1993) Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria, Biotechnol. Lett. 15, 521–526.CrossRefGoogle Scholar
  172. 172.
    Morgan, P., Lee, A.S., Lewis, S.T., Sheppard, A.N., and Watkinson, R.J. (1993) Growrh and biodegradation by white rot fungi inoculated into soil, Soil Biol. Biochem. 25, 279–287.CrossRefGoogle Scholar
  173. 173.
    Bogan, B.W., Shoenike, B., Lamar, R.T., and Culen, D. (1996) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium, Appl. Eniron. Microbiol. 62, 2381–2386.Google Scholar
  174. 174.
    Chung, N., and Aust, S.D. (1995) Degradation of pentachlorophenol in soil by Phanerochaete chrysosporium, J. Hazard. Mat. 41, 177–183.CrossRefGoogle Scholar
  175. 175.
    Zaddel, A., Majcherczyk, A., and Huttermann, A. (1993) Degradation of polychlorinated biphenyls by White-rot fungi Pleurotus ostreatus and Trametes versicolor in a solid state systém, Ecotoxic. Environment. Chem. 40, 255–266.CrossRefGoogle Scholar
  176. 176.
    Kubátová, A., Erbanová, P., Eichlerová, I., Homolka, L., Nerud, F., and Sasek, V. (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil, Chemosphere 43, 207–215.CrossRefGoogle Scholar
  177. 177.
    Eggen, T., and Sveum, P. (1999) Decontamination of aged creosote polluted soil: the influence of temperature, white rot fungus Pleurotus ostreatus, and pretreatment, Internat. Biodeter. Biodegrad. 43, 125–133.CrossRefGoogle Scholar
  178. 178.
    Eggen, T. (1999) Application of fungal substrate from commercial mushroom production —Pleurotus ostreatus — for bioremediation of creosote contaminated soil, Internat. Biodeter. Biodegrad. 44, 117–126.CrossRefGoogle Scholar
  179. 179.
    Okeke, B.C., Paterson, A., Smith, J.E., and Watson-Craik, I.A. (1997) Comparative biotransformation of pentachlorophenol in soil by solid substrate cultures of Lentinula edodes, Appl. Microbiol. Biotechnol. 48, 563–569.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • V. Šašek
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic

Personalised recommendations