Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 19))

  • 581 Accesses

Abstract

In nature, wood can be completely degraded by lignolytic fungi. Basidiomycetous white-rot fungi are particularly efficient wood degraders because of their ability to completely mineralize lignin [1,2]. The enzymes produced by white-rot fungi are directed against the two types of macromolecules that make up the walls of wood cells, Polysaccharides and polyphenols.. These enzymes consist of Polysaccharide hydrolases that break down cellulose and hemicelluloses, and of a series of oxidizing enzymes that are able to attack and depolymerize lignins. The latter group consists of a variety of extra-cellular enzymes among which peroxidases — principally lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) — together with phenol oxidases laccase (Lac), aryl-alcohol oxidase (AAO) and other nonphenol oxidases, contribute to the highly complex mechanisms leading to lignin depolymerization, aromatic rings opening and demethylation [35]. An essential step in the enzymic attack of lignin is the formation of aryl cation radicals originating from both phenolic and nonphenolic aromatic rings [1, 4, 6]. This is the typical mode of action of LiP which uses hydrogen peroxide to generate aryl cation radicals. The other major peroxidase, particularly efficient in lignin oxidation, is manganese peroxidase which oxidizes manganese ions from Mn+2 to Mn+3. These ions that have a short life-time, are stabilized by organic acids, mostly dicarboxylic acids, and are thought to diffuse in the tight lignocellulosic network of the wood cell walls [7]. Another component of the enzyme complex participating in lignin oxidation is laccase, a phenol oxidase which seems now to be rather widespread amont the most efficient wood-degrading white-rot fungi [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirk, T.K.. and Farrell, R.L. (1987) Enzymatic combustion: the microbial degradation of lignin, Annu. Rev. Microbiol. 41, 465–505

    Article  CAS  Google Scholar 

  2. Waldner, R., Leisola, M.S.A., and Fletcher, W. (1988) Comparison of lignolytic activities of selected white-rot fungi. Appl. Microbiol. Biotechno. 29, 400–407.

    Article  CAS  Google Scholar 

  3. Wariishi, H., Valli, K., and Gold, M.H. (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium, Biochem. Biophys. Res. Comm. 176, 269–275.

    Article  CAS  Google Scholar 

  4. Eriksson, K.-E.L., Blanchette, R.A. and Ander, P. (1990) Microbial and enzymatic degradation of wood components, Springer-Verlag Berlin, Heidelberg.

    Book  Google Scholar 

  5. Hatakka, A. (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125–135.

    Article  CAS  Google Scholar 

  6. Schoemaker, H.E., Lundell, T., Hatakka, A. and Piontek, K. (1994) The oxidation of veratryl alcohol, dimeric lignin models and lignin by lignin peroxidase: the redox cycle revised. FEMS Microbiol. Rev. 13, 314–321.

    Article  Google Scholar 

  7. Daniel, G. (1994) Use of electron microscopy for aiding our understanding of wood biodegradation FEMS Microbiol. Rev. 13, 199–234.

    Article  CAS  Google Scholar 

  8. Bourbonnais, R. and Paice, M.G. (1990) Oxidation of non-phenolic substrates, an expanded role for laccase in lignin biodegradation. FEBS Lett. 267, 99–102.

    Article  CAS  Google Scholar 

  9. Munoz, C., Guiller, F., Martinez, A.T. and Martinez, M.J. (1997) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn+2 oxidation. Appl. Environ. Microbiol. 63, 2166–2174.

    CAS  Google Scholar 

  10. Eggert, C., Temp, U., Dean, J.F.D., and Eriksson, K.E.L. (1996) A fungal metabolite mediates degradation of non phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391, 144–148

    Article  CAS  Google Scholar 

  11. Eriksson, K.E., Habu, N., and Samajima, M. (1993) Recent advance in fungal cellobiose oxidoreductases. Enzyme Microb. Technol. 15, 1002–1008.

    Article  CAS  Google Scholar 

  12. Hammel, K.E. (1989) OrganopoUutant degradation by ligninolytic fungi. Enzyme Microb. Technol. 11, 776–777.

    Article  CAS  Google Scholar 

  13. Joshi, D.K., and Gold, M.H. (1994) Oxidation of di-benzo-p-dioxin by lignin peroxidase from the basidiamycete Phanerochaete chrysosporium. Biochemistry 33, 10969–10975.

    Article  CAS  Google Scholar 

  14. Sack, U., Hofrichter, M., and Fritsche, W. (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol. Lett. 152, 227–234

    Article  CAS  Google Scholar 

  15. Novotny, C., Erbanova, P., Sasek, V., Kubatova, A., Cajthaml, T., Lang, E., Krahl, J. and Zadrazil, F. (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white-rot fungi. Biodegradation 10, 159–168.

    Article  CAS  Google Scholar 

  16. Boyle, C.D. (1995) Development of a practical method for inducing white-rot fungi to grow into and degrade organo-pollutants in soil. Can. J. Microbiol. 41, 345–353.

    Article  CAS  Google Scholar 

  17. Laine, M.M., and Jorgensen, K.S. (1996) Straw compost and bioremediatiated soil as inocula for bioremediation of chlorophenol-contaminated soil, Appl, Environ. Microbiol. 62, 1507–1513.

    CAS  Google Scholar 

  18. Lang, E., Nerud, F., and Zadrazil, F. (1998) Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms, FEMS Microbiol. Lett. 167, 239–244.

    Article  CAS  Google Scholar 

  19. Lang, E., Nerud, F., Novotna, E., Zadrazil, F., and Martens, R. (1996) Production of ligninolytic exoenzymes and pyrene mineralization by Pleurotus sp. in lignocellulose substrate, Folia Microbiol. 41, 489–493.

    Article  CAS  Google Scholar 

  20. Vares, T., Kalsi, M., and Hatakka, A. (1995) Lignin peroxidases, manganese-peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-stage fermentation of wheat straw. Appl. Environ. Microbiol. 61, 3515–3520.

    CAS  Google Scholar 

  21. Ruel, K., Faix, O., and Joseleau, J-P. (1994) New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis. J. Trace Microprobe Techniques 12, 247–265.

    CAS  Google Scholar 

  22. Joseleau, J.-P., and Ruel, K. (1997) Study of lignification by noninvasive techniques in growing maize internodes. An investigation by FTIR, CP/MAS 13C NMR and immunocytochemical transmission electron microscopy, Plant Physiol. 114, 1123–1133.

    Article  CAS  Google Scholar 

  23. Sarkanen, K.V. (1971) Lignin precursors and their polymerization. Lignins: occurrence, formation, structure and reactions, Sarkanen KV. and Ludwig G.H., eds., Wiley-Interscience, New York, pp. 95–163.

    Google Scholar 

  24. Ruel, K., Ambert, K. and Joseleau, J.-P. (1994) Influence of the enzyme equipment of white-rot fungi on the patterns of wood degradation. FEMS Microbiol. Rev. 13, 241–254.

    Article  CAS  Google Scholar 

  25. Ruel, K., Burlat, V. and Joseleau, J-P. (1999) Relationship between ultrastructural topochemistry of lignin and wood properties. IAWA J. 20, 2: 203–211.

    Google Scholar 

  26. Ruel, K., Barnoud, F. and Eriksson, K.E. (1981) Micromorphological and ultrastructural aspects of spruce wood degradation by wild-type Sporotrichum pulverulentum and its cellulase-less mutant cel 44. Holzforschung, 35, 157–171.

    Article  CAS  Google Scholar 

  27. Bes, B., Pettersson, B., Lennholm, H., Iversen, T. and Eriksson, K.E. (1987) Synthesis, structure and enzyme degradation of an extracellular glucan produced in nitrogen-starved cultures of the white rot fungus Phanerochaete chrysosporium, Appl. Biochem. Biotechnol. 9, 310–318.

    CAS  Google Scholar 

  28. Ruel, K. and Joseleau, J.-P. (1991) Involvement of an extracellular glucan sheath during degradation of Populus wood by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 57, 374–384.

    CAS  Google Scholar 

  29. Srebotnik, E., Messner, K. and Foisner, R. (1988) Penetrability of white rot degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 2608–2614.

    CAS  Google Scholar 

  30. Daniel, G., Petterson, B., Nilsson, T. and Volc, J. (1990) Use of immunogold cytochemistry to detect Mn(II)-dependent and lignin-peroxidases in wood degraded by the white rot fungi Phanerochaete chrysosporium and Lentinula edodes. Can. J. Bot. 68, 920–933.

    Article  CAS  Google Scholar 

  31. Joseleau, J-P. and Ruel, K. (1992) Ultrastructural examination of lignin and Polysaccharide degradation in wood by white rot fungi. In: Biotechnology in Pulp and Paper Industry. M. Kuwahara, M. Shimada eds. Uni Publishers CO, LTD, Ohyn Bidg, 2-6-8 Kayaba-cho, Nihonbashi, Tokyo, Japan, part II, 195–202.

    Google Scholar 

  32. Saloheimo, M., Niku-Paavola, M-L. and Knowles, J.K.C. (1991) Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J. Gen. Microbiol. 137, 1537–1544.

    CAS  Google Scholar 

  33. Ruel, K., Zhang, H., Niku-Paavola, M-L; Saloheimo, M., Moukha, S. and Joseleau, J-P (1999) In situ Hybridization and Immunocytochemistry in Electron Microscopy to Study the Expression of Ligninolytic Enzymes in Fungi Growing in Wood. Proceedings from the 10 th International Symposium on Wood and Pulping Chemistry, Yokohama, Japan, Vol. I, 534–539.

    Google Scholar 

  34. Janse, B.J.H., Gaskell, J., Akhtar, M. and Cullen, D. (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl. Environ. Microbiol. 64, 3536–3538.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ruel, K.C., Joseleau, JP. (2003). Development of Immunomicroscopic Methods for Bioremediation. In: Šašek, V., Glaser, J.A., Baveye, P. (eds) The Utilization of Bioremediation to Reduce Soil Contamination: Problems and Solutions. NATO Science Series, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0131-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0131-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1142-9

  • Online ISBN: 978-94-010-0131-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics