Skip to main content

Room Temperature Ionic Liquids as Replacements for Traditional Organic Solvents and Their Applications Towards “Green Chemistry” in Separation Processes

  • Chapter
Green Industrial Applications of Ionic Liquids

Abstract

The full effect of Green Chemistry will be realized when the words “environmentally friendly” and “chemistry” can be used in the same sentence without seeming to be a contradiction. In an effort to comply with governmental regulations and to spruce up the image of the chemical industry, one of the major goals of “green” chemistry is to prevent pollution and waste production at the source. In light of the vast usage of organic solvents in industry, we have investigated the use of Room Temperature Ionic Liquids (RTIL) as solvent alternatives in liquid/liquid separations. Starting from the initial study in which we examined the partitioning of simple benzene derivatives in liquid/liquid extraction systems, we have also studied how ionisable solutes partition in these systems. The knowledge of how organic solutes partition has facilitated the use of metal ion extractants in RTIL-based liquid/liquid separations. This report discusses our current results in the utilization of RTIL for liquid/liquid extraction and also highlights recent results from the literature (e.g., chromatography, supercritical fluid extraction) in which RTIL have been used for separations. The examples chosen serve as illustrations as to how RTIL can be easily used in separations, however, further research is needed to clarify where the use of RTIL is appropriate and before RTIL can be confirmed to be “green” solvent replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alaimo, R. J. and Breazeale, W. H., Jr. (1995) Safety in Academic Chemistry Laboratories, American Chemical Society, Washington, DC.

    Google Scholar 

  2. Anastas, P.T. and Warner, J. C. (1998) Green Chemistry: Theory and Practice, Oxford University Press, New York.

    Google Scholar 

  3. U. S. Department of Energy Office of Industrial Technologies, http://www.oit.doe.gov/.

  4. Technology Vision 2020: The U.S. Chemical Industry (1996) American Chemical Society, American Institute of Chemical Engineers, Chemical Manufacturers Association, Council for Chemical Research, Synthetic Organic Chemical Manufacturers Association; Washington, DC; http://www.oit.doe.gov/chemicals/page10.shtml.

    Google Scholar 

  5. The University of Alabama Center for Green Manufacturing, http://bama.ua.edu/~cgm.

    Google Scholar 

  6. Schweitzer, P.A. (1996) Handbook of Separation Techniques for Chemical Engineers, McGraw-Hill, New York.

    Google Scholar 

  7. Encyclopedia of Separation Science (1997) Wiley, New York.

    Google Scholar 

  8. Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., and Rogers, R. D. (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction, Chem. Commun. 1765–1766.

    Google Scholar 

  9. Visser, A. E., Swatloski, R. P., Reichert, W. M., Griffin, S.T., and Rogers, R. D. (2000) Traditional extractants in non-traditional solvents: Group 1 and 2 extraction by crown ethers in room temperature ionic liquids, Ind. Eng. Chem. Res. 39, 3596–3604.

    Article  CAS  Google Scholar 

  10. Visser, A. E., Swatloski, R. P., and Rogers, R. D. (2000) pH-dependent partitioning in room temperature or low melting ionic liquids provides link to solvent extraction behavior, Green Chemistry 1, 1–4.

    Article  Google Scholar 

  11. Visser, A. E., Swatloski, R. P., Griffin, S. T., Hartman, D. H., and Rogers, R. D. (In Press) Liquid/liquid extraction of metal ions in room temperature ionic liquids, Sep. Sci. Technol.

    Google Scholar 

  12. Willauer, H. D., Huddleston, J. G., Griffin, S.T., and Rogers, R. D. (1999) Partitioning of organic molecules in aqueous biphasic systems, Sep. Sci. Technol 34, 1069–1090.

    CAS  Google Scholar 

  13. Rogers, R.D. and Zhang, J. (1996) Effects of increasing polymer hydrophobicity on distribution ratios of TcO4-in polyethylene/polypropylene glycol-based aqueous biphasic systems, J. Chromatogr., Biomed. Appl. 680, 231–236.

    Article  CAS  Google Scholar 

  14. Rogers, R. D. and Zhang, J. (1997) New technologies for metal ion separations: Polyethylene glycol based-aqueous biphasic systems and aqueous biphasic extraction chromatography, J. A. Marinsky and Y. Marcus (eds.), Ion Exchange and Solvent Extraction, Vol. 14, Marcel Dekker, New York, pp. 141–193.

    Google Scholar 

  15. Rogers, R. D., Zhang, J., Bond, A. H., Bauer, C. B., Jezl, M.L., and Roden, D. M. (1995) Selective and quantitative partitioning of pertechnetate in polyethylene-glycol based aqueous biphasic systems, Solv. Extr. Ion Exch. 13, 665–688.

    Article  CAS  Google Scholar 

  16. Blanchard, L. A., Hancu, D., Beckman, E. J., and Brennecke, J. F. (1999) Green processing using ionic liquids and CO2, Nature 399, 28–29.

    Article  Google Scholar 

  17. Freemantle, M. (1998) Designer solvents, Chem. Eng. News 76, March 30, 32–37.

    Article  Google Scholar 

  18. Holbrey, J.D. and Seddon, K. R. (1999) Ionic liquids, J. Chem. Soc. Dalton Trans. 2133–2140.

    Google Scholar 

  19. Suarez, P. A. Z., Einloft, S., Dullius, J. E. L., de Souza, R. F., and Dupont, J. (1998) Synthesis and physical-chemical properties of ionic liquids based on 1-n-buty1-3-methylimidazolium cation, J. Chim. Phys. 95, 1626–1639.

    Article  CAS  Google Scholar 

  20. Carlin, R. T. and Wilkes, J. S. (1994) Chemistry and speciation in room-temperature chloroaluminate molten salts, in G. Mamantov and A. Popov (eds.), Chemistry of Nonaqueous Solutions, Current Progress, VCH-Wiley, New York, pp. 277–306.

    Google Scholar 

  21. Hussey, C. L. (1988) Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry, Pure Appl. Chem. 60, 1763–1772.

    Article  CAS  Google Scholar 

  22. Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99, 2071–2083.

    Article  CAS  Google Scholar 

  23. Wilkes, J. S., Levisky, J. A., Wilson, R.A., and Hussey, C. L. (1982) Dialkylimidazolium chloroaluminate melts: A new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis, Inorg. Chem. 21, 1263–1264.

    Article  CAS  Google Scholar 

  24. Gordon, C. M., Fields, M., Hutson, G.V., and Seddon, K. R. (1998) Ionic liquids as solvents, World Pat. WO 98/06106.

    Google Scholar 

  25. Pitner, W. R., Rooney, D. W., Seddon, K. R., Thied, R.C. (1999) Nuclear fuel reprocessing, World Pat. WO 99/41752.

    Google Scholar 

  26. Bonhote, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M. (1996) Hydrophobie, highly conductive ambient-temperature molten salts, Inorg. Chem. 35, 1168–1178.

    Article  CAS  Google Scholar 

  27. Gordon, C. M., Holbrey, J. D., Kennedy, A. R., and Seddon, K. R. (1998) Ionic liquid crystals: Hexafluorophosphate salts, J. Mater. Chem. 8, 2627–2636.

    Article  CAS  Google Scholar 

  28. Dai, S., Ju, Y.H., and Barnes, C. E. (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids, J. Chem. Soc. Dalton Trans. 1201–1202.

    Google Scholar 

  29. Rogers, R. D., Visser, A. E., Swatloski, R.P., and Hartman, D. H. (1999) Room temperature ionic liquids as replacements for volatile organic solvents in liquid/liquid separations, in K. C. Liddell and D. J. Chaiko (eds.), Metal Separation Technologies Beyond 2000: Integrating Novel Chemistry with Processing, The Minerals, Metals, and Materials Society, Warrendale, PA, pp. 139–147.

    Google Scholar 

  30. Seddon, K.R. (1997) Ionic liquids for clean technology, J. Chem. Technol. Biotechnol. 68, 351–356.

    Article  CAS  Google Scholar 

  31. Armstrong, D. W., He, L., and Liu, Y.-S. (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography, Anal. Chem. 71, 3873–3876.

    Article  CAS  Google Scholar 

  32. Wilkes, J.S. and Hussey, C. L. (1982) Selection of cations for ambient temperature chloroaluminate molten salts using MNDO molecular orbital calculations, USAF Academy, CO.

    Google Scholar 

  33. Thakur, N. V. (1998) Extraction Studies of Base metals (Mn, Cu, Co, and Ni) using the extractant 2-ethylhexy1-2-ethylhexyl phosphonic acid, PC 88A, Hydrometallurgy 48, 125–131.

    Article  CAS  Google Scholar 

  34. Murthy, D. S. R. and Prasad, P. M. (1996) Leaching of gold and silver from Miller Process dross through non-cyanide leachants, Hydrometallurgy 42, 27–33.

    Article  CAS  Google Scholar 

  35. NIST Database 46: Critically Selected Stability Constants of Metal Complexes Database (1998) U. S. Department of Commerce, Gaithersburg, MD.

    Google Scholar 

  36. Rogers, R.D. and Griffin, S. T. (1998) Partitioning of mercury in aqueous biphasic systems and on ABEC resins, J. Chromatogr., Biomed. Appl. 711, 277–283.

    Article  CAS  Google Scholar 

  37. Horwitz, E. P., Dietz, M.L., and Fisher, D. E. (1990) Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-6 and its derivatives, Solv. Extr. Ion Exch. 8, 557–565.

    Article  CAS  Google Scholar 

  38. Horwitz, E. P., Chiarizia, R., and Dietz, M. L. (1992) A novel strontium-selective extraction chromatographic resin, Solv. Extr. Ion Exch. 10, 313–336.

    Article  CAS  Google Scholar 

  39. Sachleben, R. A., Deng, Y., Bailey, D.R., and Moyer, B. A. (1997) Ring-size and substituent effects in the solvent extraction of alkali metal nitrates by crown ethers in 1,2-dichloromethane and 1-octanol, Solv. Extr. Ion Exch. 14, 995–1015.

    Article  Google Scholar 

  40. Moyer, B. A., Deng, Y., Sun, Y., Sachleben, R. A., Batra, A. K., and Robinson, R. B. (1997) Extraction of cesium nitrate from concentrated sodium nitrate solutions with 21-crown-7 ethers: Selectivity and equilibrium modeling, Solv. Extr. Ion Exch. 15, 791–810.

    Article  CAS  Google Scholar 

  41. Nazarenko, A. Y. and Lamb, J. D. (1997) Selective transport of lead(II) and strontium(II) through a crown ether-based polymer inclusion membrane containing dialkylnaphthalenesulfonic acid, J. Inclusion Phenom. Mol. Recognit. Chem. 29, 247–258.

    Article  CAS  Google Scholar 

  42. Dietz, M. L., Horwitz, E. P., and Rhoads, S. (1996) Extraction of cesium from acidic nitrate media using macrocyclic polyethers: The role of organic phase water, Solv. Extr. Ion Exch. 14, 1–12.

    Article  CAS  Google Scholar 

  43. Horwitz, E. P., Dietz, M. L., and Fisher, D. E. (1990) Correlation of the extraction of strontium nitrate by a crown ether with the water content of the organic phase, Solv. Extr. Ion Exch. 8, 199–208.

    Article  CAS  Google Scholar 

  44. Marcus, Y. (1993) The properties of organic ligands that are relevant to their use as solvating solvents, Chem. Rev., 416–441.

    Google Scholar 

  45. Dong, D.C. and Winnick, M. A. (1984) The py scale of solvent properties, Can. J. Chem. 62, 2560–2565.

    Article  CAS  Google Scholar 

  46. CRC Handbook of Chemistry and Physics (1992) CRC Press, Boca Raton, FL.

    Google Scholar 

  47. Poole, C. F., Kersten, B. R., Ho, S. S. J., Coddens, M.E., and Furton, K. G. (1986) Organic salts, liquid at room temperature, as mobile phases in liquid chromatography, J. Chromatogr. 352, 407–425.

    Article  CAS  Google Scholar 

  48. Poole, S. K., Shetty, P.H., and Poole, C. F. (1989) Chromatographic and spectroscopic studies of the solvent properties of a new series of room temperature liquid tetraalkylammonium sulfonates, Anal. Chim. Acta 218, 241–264.

    Article  CAS  Google Scholar 

  49. Cull, S. G., Holbrey, J. D., Vargas-Mora, V., Seddon, K.R., and Lye, G. J. (2000) Room temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations, Biotechnol. Bioeng. 69, 227–233.

    Article  CAS  Google Scholar 

  50. Visser, A. E., Swatloski, R. P., Reichert, W. M., Rogers, R. D., Mayton, R., Sheff, S., Wierzbicki, A., and Davis, J. H., Jr. (2001) Task specific ionic liquids for the extraction of metal ions from aqueous solutions, Chem. Commun., 35–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Visser, A.E., Swatloski, R.P., Reichert, W.M., Willauer, H.D., Huddleston, J.G., Rogers, R.D. (2003). Room Temperature Ionic Liquids as Replacements for Traditional Organic Solvents and Their Applications Towards “Green Chemistry” in Separation Processes. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics