Skip to main content

Ionic Liquids as Alternatives to Traditional Organic and Inorganic Solvents

  • Chapter
Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

Abstract

The physical and chemical properties of ionic liquids are compared to those of traditional solvents. The behaviour of the SN2 reaction and Diels-Alder reaction occurring in ionic liquids and common solvents is compared and contrasted. The chemistry occurring in several common ionic liquids is also assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson, W.M. (1998) Art in science: utility of solvents in green chemistry, in Green Chemistry, Anastas, P. T., Williamson, T. C. (eds.), Oxford University Press, Oxford, pp. 201–222.

    Google Scholar 

  2. Reichardt, C. (1988) Solvents and Solvent Effects in Organic Chemistry, 2nd Edit., VCH, Weinheim.

    Google Scholar 

  3. Marcus, Y. (1998) The Properties of Solvents, Wiley, New York.

    Google Scholar 

  4. Archer, W.L. (1996) Industrial Solvents Handbook, Marcel Dekker, New York.

    Google Scholar 

  5. Barton, A.F.M. (1983, 1991) CRC Handbook of Solubility Parameters and Other Cohesive Parameters, CRC, Boca Raton, FL.

    Google Scholar 

  6. Anastas, P.T. and Warner, J. C. (1998) Green Chemistry: Theory and Practice, Oxford University Press, Oxford.

    Google Scholar 

  7. Grieco, P. (ed.) (1998) Organic Synthesis in Water, Blackie Academic, London.

    Google Scholar 

  8. Knockel, P. (ed.) (1999) Modern Solvents in Organic Synthesis, Springer, Berlin.

    Google Scholar 

  9. Savage, P.E. (1999) Organic chemical reactions in supercritical water, Chem. Rev. 99, 603–621.

    Article  CAS  Google Scholar 

  10. Hope, E.G. and Stuart, A. M. (1999) Fluorous biphase catalysis, J. Fluor. Chem. 100, 75–83.

    Article  CAS  Google Scholar 

  11. Laszlo, P. (ed.) (1987) Preparative Chemistry using Supported Reagents, Academic Press, New York.

    Google Scholar 

  12. Kabalka, G.W. and Pagni, R. M. (1997) Organic reaction on alumina, Tetrahedron 53, 7999–8065.

    Article  CAS  Google Scholar 

  13. Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99, 2071–2083.

    Article  CAS  Google Scholar 

  14. Seddon, K:R. (1997) Ionic liquids for clean technology, J. Chem. Tech. Biotechnol. 68, 351–356.

    Article  CAS  Google Scholar 

  15. Chauvin, Y. and Olivier-Bourbigou, H. (1995) Nonaqueous ionic liquids as reaction solvents, Chemtech. 25 (9), 26–30.

    Google Scholar 

  16. Olah, G. A., Surya Prakash, G.K., and Sommer, J. (1985) Superacids, Wiley-Interscience, New York.

    Google Scholar 

  17. O’Donnell, T.A. (1992) Superacids and Acidic Melts as Inorganic Chemical Reaction Media, VCH, New York.

    Google Scholar 

  18. Williams, S. D., Schoerbrechts, J. P., Selkirk, J.C., and Mamantov, G. (1987) A new room-temperature molten salt system. Organic cation tetrachloroborates, J. Am. Chem. Soc. 109, 2218–2219.

    Article  CAS  Google Scholar 

  19. Dickinson, E., Williams, M. E., Hendrickson, S. M., Masui, H., and Murray, R. W. (1999) Hybrid redox polyether melts based on polyether-tether counterions, J. Am. Chem. Soc. 121, 613–616.

    Article  CAS  Google Scholar 

  20. Holbrey, J.D. and Seddon, K. R. (1999) The phase behavior of 1-alky1-3-methyl-imidazolium tetrafluoroborates: ionic liquids and ionic liquid crystals, J. Chem. Soc., Dalton Trans. 2133–2139.

    Google Scholar 

  21. Davis, J. H. Jr., Forrester, K.J., and Merrigan, T. (1998) Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole, Tetrahedron Lett. 39, 8955–8958.

    Article  CAS  Google Scholar 

  22. Howarth, J., Hanlon, K., Fayne, D., and McCormac, P. (1997) Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction, Tetrahedron Lett. 38, 3097–4000.

    Article  CAS  Google Scholar 

  23. Bonhote, P., Dias, A.-P., Papageorgeiou, N., Kalyanasundaram, K., and Grätzel, M. (1996) Hydrophobic, high conductive ambient-temperature molten salts, Inorg. Chem. 35, 1168–1178.

    Article  CAS  Google Scholar 

  24. Harrod, W.B. and Pienta, N. J. (1990) Solvent polarity scales. 1. Determination of ET and π* values for phosphonium and ammonium melts, J. Phys. Org. Chem. 3, 534–544.

    Article  CAS  Google Scholar 

  25. Poole, S. K., Shetty, P.H., and Poole, C. (1989) Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates, Anal. Chim. Acta 218, 241–264.

    Article  CAS  Google Scholar 

  26. Bort, E., Meltsin, A. and Huppert, D. (1994) Solvation dynamics of coumarin 153 in molten salts, J. Phys. Chem. 98, 3295–3299.

    Article  Google Scholar 

  27. Reichardt, C. and Harbusch-Görnert, E. (1993) Über pyridinium-N-phenolat-betaine und ihre Verwendung zur Charakterisierung der polarität von lösungsmitteln, X, Liebigs Ann. Chem. 721–743.

    Google Scholar 

  28. Swain, C. G., Ohno, A., Roe, D. K., Brown, R. and Maugh, T. II (1967) Tetrahexylammonium benzoate, a liquid salt at 25°, a solvent for kinetics or electrochemistry, J. Am. Chem. Soc. 89, 2648–2649.

    Article  CAS  Google Scholar 

  29. Shetty, P. H., Youngberg, P. J., Kersten, B.R., and Poole, C. F. (1987) Solvent properties of liquid organic salts used as mobile phases in microcolumn reversed-phase liquid chromatography, J. Chromatogr. 411, 61–79.

    Article  CAS  Google Scholar 

  30. Sundermeyer, W. (1965) Fused salts and their use as reaction media, Angew. Chem. Int. Ed. Engl. 4, 222–238.

    Article  Google Scholar 

  31. Gordon, J.E. (1969) Applications of fused salts in organic chemistry, in Techniques and Methods of Organic and Organometallic Chemistry, Vol. 1, Denney, D. B., (ed.), Marcel Dekker, New York, pp. 51–188.

    Google Scholar 

  32. Jones, H.L. and Osteryoung, R. A. (1975) Organic reactions in molten tetrachloroaluminate solvents, Adv. Molten Salt Chem. 3, 121–176.

    Article  CAS  Google Scholar 

  33. Pagni, R.M. (1987) Organic and organometallic reactions in molten salts and related melts, Adv. Molten Salt Chem. 6, 211–346.

    CAS  Google Scholar 

  34. Smith, G.P. and Pagni, R. M. (1987) Homogeneous organic reactions in molten salts. Selected topics, in Molten Salt Chemistry, Mamantov, G., Marassi, R., (eds.), Reidel, Dordricht, pp. 383–404.

    Chapter  Google Scholar 

  35. Ford, W. T., Hauri, R.J., and Smith, S. G. (1974) Nucleophilic reactivities of halide ions in molten triethy1-n-hexylammonium triethy1-n-hexylboride, J. Am. Chem. Soc. 96, 4316–4318.

    Article  CAS  Google Scholar 

  36. Gordon, J.E. and Varughese, P. (1971) Nucleophilicity of halide ions in molten quaternary ammonium salts, Chem. Commun. 1160–1161.

    Google Scholar 

  37. Ford, W.T. and Hauri, R. J. (1973) Kinetics of the reaction of cyclohexyl bromide with tetra-n-propylammonium thiophenoxide in methanol, dimethyl formamide, and molten triethy1-n-hexylammonium triethyl-n-hexylboride, J. Am. Chem. Soc. 95, 7381–7386.

    Article  CAS  Google Scholar 

  38. Jaeger, D.A. and Tucker, C. (1989) Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt, Tetrahedron Lett. 30, 1785–1788.

    Article  CAS  Google Scholar 

  39. Fischer, T., Sethi, A., Welton, T., and Woolf, J. (1999) Diels-Alder reactions in room-temperature ionic liquids, Tetrahedron Lett. 40, 793–796.

    Article  CAS  Google Scholar 

  40. Lee, C.W. (1999) Diels-Alder reactions in chloroaluminate ionic liquids: acceleration and selectivity enhancement, Tetrahedron Lett. 40, 2461–2464.

    Article  CAS  Google Scholar 

  41. Earle, M. J., McCormac, P.B. and Seddon, K. R. (1999) Diels-Alder reactions in ionic liquids, Green Chem. 1, 23–25.

    Article  CAS  Google Scholar 

  42. Braun, R. and Sauer, J. (1986) Die polarität etherischer lithiumperchlorat-lösungen, Chem. Ber. 119, 1269–1274.

    Article  CAS  Google Scholar 

  43. Grieco, P.A. (1991) Organic chemistry in unconventional solvents, Aldrichim. Acta 24, 59–66.

    CAS  Google Scholar 

  44. Pocker, Y. and Ciula, J. C. (1989) Electrostatic catalysis by ionic aggregates. 7. Interactions of dipolar indicator molecules with ionic clusters, J. Am. Chem. Soc. 111, 4728–4735, and six earlier papers in the series.

    Article  CAS  Google Scholar 

  45. Springer, G., Elam, C., Edwards, A., Bowe, C., Boyles, D., Bartmess, J., Chander, M., West, K., Williams, J., Green, J., Pagni, R.M., and Kabalka, G. W. (1999) Chemical and spectroscopic studies related to the Lewis acidity of lithium perchlorate in diethyl ether, J. Org. Chem. 64, 2202–2210.

    Article  CAS  Google Scholar 

  46. Barbier, P., Mohr, P., Muller, M., and Mascidri, R. (1998) Efficient fluorination with tetrabutylammonium dihydrogen trifluoride in a novel approach toward 1-α-fiuoro-25-hydroxy-vitamin D3 analogues, J. Org. Chem. 63, 6984–6989.

    Article  CAS  Google Scholar 

  47. Waldmann, H. (1991) LiClO4 in ether — an unusual solvent, Angew. Chem. Int. Ed. Engl. 30, 1306–1308.

    Article  Google Scholar 

  48. Flohr, A. and Waldmann, H. (1995) LiClO4 and organic solvents — a powerful combination, J. Prat Chem 337, 609–611.

    Article  CAS  Google Scholar 

  49. Pocker, Y and Buchholz, R. F. (1970) Electrostatic catalysis by ionic aggregates. II.. The reversible elimination of HCl from t-butyl chloride and the rearrangement of 1-phenylallyl chloride in lithium perchlorate-diethyl ether solutions, J. Am. Chem. Soc. 92, 4033–4038.

    Article  CAS  Google Scholar 

  50. Silva, R.A. (1992) Explosion with lithium perchlorate in Diels-Alder reactions, in Chem. Eng. News [Dec. 21], 2.

    Google Scholar 

  51. Smith, M.B. (1994) Organic Synthesis, McQraw Hill, NY, pp. 1310–1333.

    Google Scholar 

  52. Demitras, G.C. and Muetterties, E. C. (1977) Metal clusters in catalysis. 10. A New Fischer-Tropsch synthesis, J. Am. Chem. Soc. 99, 2796–2797.

    Article  CAS  Google Scholar 

  53. Boon, J. A., Levisky, J. A., Pflug, J.L., and Wilkes, J. S. (1986) Friedel-Crafts reactions in ambient-temperature molten salts, J. Org. Chem. 51, 480–483.

    Article  CAS  Google Scholar 

  54. Trulove, P. C., Sukumaran, D. K., Osteryoung, R.A. (1994) Protons in acidic ambient-temperature chloroaluminate molten salts: hydrogen-deuterium exchange between the imidazolium cation and hydrogen chloride, J. Phys. Chem. 98, 141–146.

    Article  CAS  Google Scholar 

  55. Pagni, R.M. (1984) Multiply charge carbocations and related species in solution, Tetrahedron 40, 4161–4215.

    Article  CAS  Google Scholar 

  56. Donahue, F. M., Levisky, J. A., Reynolds, G.F., and Wilkes, J. S. (1986) Reaction of chlorine with ambient temperature chloroaluminate molten salts, Proc.-Electrochem. Soc. 86-1, 332–337.

    CAS  Google Scholar 

  57. Smith, G. P., Dworkin, A. S., Pagni, R.M., and Zingg, S. P. (1989) Brønsted superacidity of HCl in a liquid chloroaluminate. AlCl3-1-ethy1-3-methy1-lH-imidazolium chloride, J. Am. Chem. Soc. 111, 525–530.

    Article  CAS  Google Scholar 

  58. Smith, G. P., Dworkin, A. S., Pagni, R.M., and Zingg, S. P. (1989) Quantitative study of the acidity of HCl in a molten chloroaluminate system (AlCl3/1-ethy1-3-methy1-lH-imidazolium chloride as a function of HCl pressure and melt composition (51.0-66.4 mol% A1C13), J. Am. Chem. Soc. 111, 5075–5077.

    Article  CAS  Google Scholar 

  59. Campbell, J.L.E. and Johnson, K. E. (1995) The chemistry of protons in ambient-temperature ionic liquids: solubility and electrochemical profiles of HCl in HCl: ImCl: AlCl3 ionic liquids as a function of pressure (295 K), J. Am. Chem. Soc. 117, 7790–7800.

    Google Scholar 

  60. Linert, W., Jameson, R.F., and Taha, A. (1993) Donor numbers of anions in solution: the use of solvochromic Lewis acid-base indicators, J. Chem. Soc., Dalton Trans. 3181–3186.

    Google Scholar 

  61. Bordwell, F.G. (1988) Equilibrium acidities in dimethyl sulfoxide solution, Acc. Chem. Res. 21, 456–463.

    Article  CAS  Google Scholar 

  62. Zawodzinski, J. A. Jr. and Osteryoung, R. A. (1989) Donor-acceptor properties of ambient chloroaluminate melts, Inorg. Chem. 28, 1710–1715.

    Article  CAS  Google Scholar 

  63. Abdul-Sada, A. K., Greenway, A. M., Hitchcock, P. B., Mohammed, T. J., Seddon, K.R., and Zora, J.A. (1986) Upon the structure of room temperature haloaluminate ionic liquids, J. Chem. Soc., Chem. Commun. 1753–1754.

    Google Scholar 

  64. Dieter, K. M., Dymek, C. J. Jr., Heimer, N. E., Rovang, J.W., and Wilkes, J. S. (1988) Ionic structure and interactions in 1-methy1-3-ethylimidazolium chloride-AlCl3 molten salts, J. Am. Chem. Soc. 110, 2722–2726.

    Article  CAS  Google Scholar 

  65. Dymek, C. J., Grossie, D. A., Fratini, A.V., and Adams, W. W. (1989) Evidence for the presence of hydrogen-bonded ion-ion interactions in the molten salt precursor, 1-methy1-3-ethylimidazolium chloride, J. Mol. Struct. 213, 25–34.

    Article  CAS  Google Scholar 

  66. Wilkes, J.S. and Zaworotko, M. J. (1992) Air and water stable 1-ethy1-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. 965–967.

    Google Scholar 

  67. Fuller, J., Carlin, R. T., De Long, H.C., and Haworth, D. (1994) Structure of 1-ethy1-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts, J. Chem. Soc., Chem. Commun. 299–300.

    Google Scholar 

  68. Lee, C., Winston, T., Unni, A., Pagni, R.M., and Mamantov, G. (1996) Photoinduced electron transfer chemistry of 9-methylanthracene. Substrate as both electron donor and acceptor in the presence of the 1-ethy1-3-methylimidazoh’um ion, J. Am. Chem. Soc. 118, 4919–4924.

    Article  CAS  Google Scholar 

  69. Zhang, X.-M., Bordwell, F. G., Van Der Puy, M., and Fried, H. E. (1993) Equilibrium acidities and homolytic bond dissociation energies of the acidic C-H bonds in N-substituted trimethylammonium and pyridinium cations, J. Org. Chem. 58, 3060–3066.

    Article  CAS  Google Scholar 

  70. Alder, R. W., Allen, P.R., and Williams, S. J. (1995) Stable carbenes as strong bases, J. Chem. Soc., Chem. Commun. 1267–1268.

    Google Scholar 

  71. Bourissou, D., Guerret, O., Gabbai, F.P., and Bertrard, G. (2000) Stable carbenes, Chem. Rev. 100, 39–91.

    Article  CAS  Google Scholar 

  72. Davis, J. H. Jr. and Forrester, K. J. 1(1999) Thiazolium-ion based organic ionic liquids (OILs). Novel OILs which promote the benzoin condensation, Tetrahedron Lett. 40, 1621–1622.

    Article  CAS  Google Scholar 

  73. Jones, R.A.Y. (1984) Physical and mechanistic organic organic chemistry, 2nd Edit., Cambridge, Cambridge, pp. 165–166.

    Google Scholar 

  74. Badri, M. Brunet, J.-J., and Perron, R. (1992) Ionic liquids as solvents for the regioselective O-alkylation of C/O ambient nucleophiles, Tetrahedron Lett. 33, 4435–4438.

    Article  CAS  Google Scholar 

  75. Earle, M. J., McCormac, P.B., and Seddon, K.R. (1998) Regioselective alkylation in ionic liquids, Chem. Commun. 2245–2246.

    Google Scholar 

  76. Gordon, C.M. and McCluskey, A. (1999) Ionic liquids: a convenient solvent for environmentally friendly allylation reactions with tetraallylstanname, Chem. Comm. 1431–1432.

    Google Scholar 

  77. Malleron, J.-L., Flaud, J.-C., and Legros, J.-Y. (1997) Handbook of palladium-catalyzed organic reactions, Academic Press, New York.

    Google Scholar 

  78. Kabalka, G. W., Pagni, R.M., and Hair, C. M. (1999) Solventless Suzuki coupling reactions on palladium-doped KF/Al2O3, Org. Lett. 1, 1423–1425.

    Article  CAS  Google Scholar 

  79. Kaufmann, D. E., Nouroozian, M., and Henze, H. (1996) Molten salts as an efficient medium for palladium catalyzed C-C coupling reactions, Synlett 1091–1092.

    Google Scholar 

  80. Carmichael, A. J., Earle, M. J., Holbrey, J. D., McCormac, P.B., and Seddon, K. R. (1999) The Heck reaction in ionic liquids: a multiphasic catalytic system, Org. Lett. 1, 997–1000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pagni, R.M. (2003). Ionic Liquids as Alternatives to Traditional Organic and Inorganic Solvents. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics