Skip to main content

High-Temperature NMR Studies of Ionic-Liquid Catalysts

  • Chapter
Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

Abstract

The number of “green” applications of ionic liquids (ILs) is progressively growing in recent years due to the chemical industry reorientation, including catalysis, towards environmentally friendly processes. Sulfuric acid production using silica-supported alkali metal pyrosulfate-vanadium oxide catalyst (M 2S 2O7-V2O5, hereinafter M = Na, K or Cs) was the first prominent application of an IL system in catalysis. SO2 oxidation to SO3 is carried out at high temperatures, where the active component of the catalyst is a melt [1]. Today, similar IL systems are used in the processes of flue gas purification [2], and the technological benefits are recognised worldwide. A recently discovered promising method for the catalytic epoxidation of olefins with supported alkali nitrate melts exemplifies another breakthrough application of catalysis by IL [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boreskov G.K. (1954) Catalysis in Production of Sulfuric Acid, Goskhimizdat, Moscow (in Russian).

    Google Scholar 

  2. Satriana M., Ridge P. (1981) New developments in flue gas desulfurization technology, Noyes Data Corp., 326 pp.

    Google Scholar 

  3. Nijhuis T.A., Musch S., Makkee M. and Moulijn J.A. (2000) The direct epoxidation of propene by molten salts, Appl. Catal. A: General, 196, 217–224.

    Article  CAS  Google Scholar 

  4. Carper W.R. (1995) Molten salts, in D.M. Grant and R.K. Harris (eds.), Encyclopedia of NMR; John Wiley & Sons Ltd.: Chichester, UK, 4, 3105–3109.

    Google Scholar 

  5. Keller C.E. and Carper W.R. (1995) 1H NMR Relaxation Studies of Molten Salts Containing Ethylaluminum Dichloride, Inorg. Chim. Acta 238, 115–120.

    Article  CAS  Google Scholar 

  6. Taulelle F., Coutures J.P., Massiot D., Rifflet J.P. (1989) High and very high temperature NMR, Bull. Magn. Reson. 11, 318–320.

    CAS  Google Scholar 

  7. Coutures JP, Massiot D., Bessada C., Echegut P., Rifflet JC, Taulelle F (1990) Etude par RMN 27A1 d’aluminates liquids dans le domaine 1600–2100°C, C.R. Acad Sci Paris II 310, 1041–1045.

    Google Scholar 

  8. Lapina O.B., Terskikh V.V., Shubin A.A., Eriksen K.M., Fehrmann R. (1999) High-temperature multinuclear magnetic resonance studies of vanadia catalysts for SO2 oxidation, Colloids and Surfaces A 158, 255–271.

    Article  CAS  Google Scholar 

  9. Boreskov G.K., Davydova L.P., Mastikhin V.M. and Polykova G.M. (1966) ESR Studies of vanadia catalysts, Dokl. Akad. Nauk USSR 171, 648–651.

    CAS  Google Scholar 

  10. Lapina O.B., Mastikhin V.M., Shubin A.A., Krasilnikov V.N., Zamaraev K.I. (1992) 51V Solid State NMR Studies of Vanadia Based Catalysts, Progr. in NMR spectroscopy 24, 457–527.

    Article  CAS  Google Scholar 

  11. Lapina O.B., Terskikh V.V., Shubin A.A., Mastikhin V.M., Eriksen K.M., Fehrmann R. (1997) High-Temperature NMR Studies of the Glass — Crystal Transition in the CS2S2O7-V2O5 System, J. Phys. Chem. 101, 9188–9194.

    CAS  Google Scholar 

  12. Eriksen K.M., Fehrmann R., Hatem G., Gaune-Escard M., Lapina O.B., Mastikhin V.M. (1996) Conductivity, NMR, Thermal Measurements, and Phase Diagram of the K2S2O7-KHSO4 System, J. Phys. Chem. 100, 10771–10778.

    Article  CAS  Google Scholar 

  13. Ediger M.D., Angell C.A., Nagel S.R. (1996) Supercooled Liquids and Glasses, J. Phys. Chem. 100, 13200–13212.

    Article  CAS  Google Scholar 

  14. Stebbins J.F. (1991) Nuclear Magnetic Resonance at High Temperature, Chem. Rev. 91, 1353–1373.

    Article  CAS  Google Scholar 

  15. Sen S., Stebbins J.F., (1997) Heterogeneous NO3 - Ion Dynamics near the Glass Transition in the Fragile Ionic Glass Former Ca0.4K0.6(NO3)1.4 A 15N NMR Study, Phys. Rev. Letters 78, 3495–3498.

    Article  CAS  Google Scholar 

  16. Spearing D.R., Stebbins J.F., Farnan I. (1994) Diffusion and the Dynamics of Displacive Phase Transitions in Cryolite (Na3AlF6) and Chiolite (Na5Al3F14): Multi-Nuclear NMR Studies, Phys. Chem. Minerals 21, 373–386.

    Article  CAS  Google Scholar 

  17. Folkmann G.E., Hatem G., Fehrmann R., Gaune-Escard M., Bjerrum N.J. (1991), Conductivity, Thermal Analysis, and Phase Diagram of the System CS2S2O7-V2O5. Spectroscopic Characterization of Cs4(VO2)2(SO4)2S2O7, Inorg. Chem. 30, 4057–4061.

    Article  CAS  Google Scholar 

  18. Massiot D., Bessada C., Echegut P., Coutures J.P., Taulelle F. (1990) High Temperature NMR Study of Lithium Sodium Sulfate, Solid State Ionics 37, 223–229.

    Article  CAS  Google Scholar 

  19. Junke K.-D., Mali M., Roos J., Brinkmann D., Lunden A., Graneli B. (1988) Ion Dynamics in (1-x)Li2SO4 xNa2SO4 Systems Studied by 7Li and 23NaNMR, Solid State Ionics 28-30, 1287–1289.

    Article  Google Scholar 

  20. Colomban Ph. and Novak A. (1988) Proton Transfer and Superionic Conductivity in Solid and Gels, J. Mol. Structure 177, 277–308.

    Article  Google Scholar 

  21. Iton K., Ozaki T. and Nakamura E. (1981) Structure of Caesium Hydrogensulfate, Acta Cryst. B37, 1908–1909.

    Google Scholar 

  22. Colomban Ph., Pham-Thi M. and Novak A (1986) Thermal History and Phase Transitions in the Superionic Protonic Conductors CsHSO4 and CsHSeO4, Solid State Ionics 20, 125–134.

    Article  CAS  Google Scholar 

  23. Blinc R., Dolinsek J., Lahahnar G., Zupancic I., Shuvalov L.A. and Baranov A.I. (1984) Spin-Lattice Relaxation and Self-Diffusion Study of the Protonic Superionic Conductors CsHSO4 and CsHSeO4, Phys. Stat. Sol. (b)123, K83–K–87

    Google Scholar 

  24. Dolinsek J., Blinc R., Novak A, Shuvalov L.A. (1986) 133Cs and Deuteron NMR Study of the Superionic Transition in CsDSO4, Solid State Comm. 60, 877–879.

    Article  CAS  Google Scholar 

  25. Hansen N.H., Fehrmann R., Bjerrum N.J. (1982) Complex Formation in Pyrosulfate Melts. 1. Petentiometric, Cryoscopic, and Spectroscopic Investigations of the Systems K2S2O7-K2SO4 and K2S2O7-K2SO4-V2O5 in the Temperature Range 410–450°C, Inorg. Chem. 21, 744-752.

    Article  Google Scholar 

  26. Fehrmann R., Gaune-Escard M., Bjerrum N.J. (1986) Complex Formation in Pyrosulfate Melts. 2. Calorimetric Investigations of the Systems V2O5-K2S2O7, V2O5.K2S2O7-K2SO4, V2O5.2K2S2O7-K2SO4 and V2O5.3K2S2O7-K2SO4 at 430°C, Inorg. Chem. 25, 1132–1137.

    Article  CAS  Google Scholar 

  27. Hatem G., Fehrmann R., Gaune-Escard M. and Bjerrum N.J. (1987) Complex Formation in Pyrosulfate Melts. 3. Density and Conductometric Measurements of the Systems V2O5-K2S2O7, in the Temperature Range 350–490°C, J. Phys. Chem. 91, 195–203.

    Article  Google Scholar 

  28. Masters S.G., Eriksen K.M., Fehrmann R. (1997) Hysteresis phenomena in sulfuric dioxide oxidation over supported vanadium catalysts, J. Mol. Catal. A: Chemical 120, 227–233.

    Article  CAS  Google Scholar 

  29. Balzhinimaev B.S., Ivanov A.A., Lapina O.B., Mastikhin V.M., Zamaraev K.I. (1989) Mechanism of Sulfur Dioxide Oxidation over supported Vanadium Catalysts, Faraday Discuss. Chem. Soc. 87/8, 133–147.

    Article  Google Scholar 

  30. Folkmann G.E., Hatem G., Fehrmann R., Gaune-Escard M., Bjerrum N.J. (1993) Complex Formation in Pyrosulfate Melts. 4. Density, Potentiometry, Calorimetry, and Conductivity of the Systems Cs2S2O7-V2O5, V2O5 K2S2O7-K2SO4, V2O52K2S2O7-K2SO4 and V2O53K2S2O7-K2SO4 at 430°C, Inorg. Chem. 25, 1132–1137.

    Google Scholar 

  31. Karydis D.A., Eriksen K.M., Fehrmann R., and Boghosian S. (1994) High-temperature Spectroscopic and Electron Spin Resonance Spectroscopic Investigations of Vanadium Complexes in the Molten Salt-Gas System V2O5-K2S2O7/SO2-SO3-N2, J.Chem. Soc.Dalton. Trans., 2151–2157.

    Google Scholar 

  32. Karydis D.A., Boghosian S., Fehrmann R. (1994) Conductivity and Phase Diagram of the SO2 Oxidation Catalyst Model System: M2S2O7-V2O5 (M = 80%K + 20%Na), J. Catal. 145, 312–317.

    Article  CAS  Google Scholar 

  33. Hatem G., Fehrmann R., Gaune-Escard M. (1994) Calorimetric and Conductometric investigations of the systems K2S2O7-V2O5 and K2S2O7-K2SO4-V2O5 in the range 390-500°C, Thermoch. Acta 243, 63–77.

    Article  CAS  Google Scholar 

  34. Folkmann G.E., Eriksen K.M., Fehrmann R., Guane-Escard M., Hatem G., Lapina O.B., Terskikh V.V. (1998) Conductivity, NMR Measurements and Phase Diagram of K2S2O7-V2O5 System, J. Phys. Chem. 102, 24–28.

    CAS  Google Scholar 

  35. Hatem G., Abdoun F., Guane-Escard M., Eriksen K.M., and Fehrmann R. (1998) Conductometric, Density and Thermal Measurements of the M2S2O7 (M=Na, K, Rb, Cs) salts, Thermochim. Acta 319, 33–42.

    Article  CAS  Google Scholar 

  36. Rasmussen S.B., Eriksen K.M., and Fehrmann R. (1999) Sulfato Complex Formation of V(V) and V(IV) in Pyrosulfate Melts Investigated by Potentiometry and Spectroscopic Methods, J. Phys. Chem. B 103, 11282–11289.

    Article  CAS  Google Scholar 

  37. Fehrmann R., Hansen N.J., Bjerrum N.J. (1983) Raman Spectroscopic and Spectrofotometric Study of the System K2S2O7-KHSO4 in the temperature Range 200-450°C, Inorg. Chem. 22, 4009–4014.

    Article  CAS  Google Scholar 

  38. Hatem G., Gaune-Escard M., Rasmussen S.B., and Fehrmann R. (1999) Conductivity, Thermal Measurements, and Phase Diagram of the Na2S2O7-NaHSO4 System, J. Phys. Chem. B 103, 1027–1030.

    Article  CAS  Google Scholar 

  39. Mastikhin V.M., Lapina O.B., Krasilnikov V.N., Ivakin A.A. (1984) 51V NMR spectra of vanadates and oxosulfatovanadates of alkali metals, React. Kinet. Catal. Lett. 24, 119–125.

    Article  CAS  Google Scholar 

  40. Eckert H. (1992) Structural Characterization of Noncrystalline Solids and Glasses Using Solid State NMR, Progress in NMR Spectroscopy 24, 159–293.

    Article  CAS  Google Scholar 

  41. Nielsen K., Fehrmann R., and Eriksen K.M. (1993) Crystal Structure of Cs4(VO)2O(SO4)4, Inorg. Chem. 32, 4825–4828.

    Article  CAS  Google Scholar 

  42. Backman H.G., Ahmed F.R., Barnes W.H., (1961) The Crystal Structure of Vanadium Pentoxide, ZtschrXristallogr. 115, 110–131.

    Article  Google Scholar 

  43. Massiot D., Taulelle F., Coutures J.P. (1990) Structural Diagnostic of High Temperature Liquid Phases by 27A1 NMR, Colloq. Phys. C1-C5, 425–431.

    Google Scholar 

  44. Stebbins J.F., Farnan I., Dando N., Tzeng S.Y., (1992) Solids and Liquids in the NaF-AlF3-Al2O3 System: A High Temperature NMR Study, J. Am. Ceram. Soc. 75, 3001–3006.

    Article  CAS  Google Scholar 

  45. Kerridge D.H. (1978) Molten Salts as Nonaqueous Solvents from “The Chemistry of Nonaqueous Solvents”, Academic Press, New York VB, 269–329.

    Google Scholar 

  46. Vashman A.A. and Pronin I.S. (1979) Nuclear Magnetic Relaxation and its Application in Chemical Physics, Nauka, Moscow.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lapina, O.B., Terskikh, V.V., Bal’Zhinimaev, B.S., Eriksen, K.M., Fehrmann, R. (2003). High-Temperature NMR Studies of Ionic-Liquid Catalysts. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics