Skip to main content

Electrochemistry of Niobium, Tantalum and Titanium in Low-Temperature Carbamide-Halide Melts

  • Chapter
Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

  • 736 Accesses

Abstract

The electrochemical behaviour of melts containing carbamide urea; CO(NH2)2 at inert electrodes and the anodic dissolution of niobium, tantalum and titanium in carbamide-ammonium and alkali halide melts, as well as the structure of the complex ions formed, have been studied by electrochemical and spectroscopic methods. In carbamide-containing melts, all metals are passivated. In carbamide-chloride melts, a metal dissolution depassivator is a product of anodic oxidation of carbamide and [NH4]C1. Due to the different degrees of metal passivation, the electrochemical dissolution mechanisms of the metals are different, and their electroactivities decrease in the order Ti > Nb > Ta. In carbamide-[NH4]F melt, fluoride ions have a depassivating effect on the dissolution of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krasilnikov, M.T. and Ivanovskii, L.Y. (1971) The equilibrium of metallic niobium with its ions in KG, NaCl and their mixture, Proceedings of the Institute of Electrochemistry of the Ural. Branch of the USSR Academy of Sciences 17, 66–77.

    Google Scholar 

  2. Inman, D., White, S.H. (1978) The production of refractory metals by the electrolysis of molten salts: design factors and limitations, J. Appl. Electrochem 8, 375–390.

    Article  CAS  Google Scholar 

  3. Ivanovskii, L.Y. and Krasilnikow, M.T. (1961) Anodic dissolution of niobium in chloride and chloride-fluoride melts, Proceedings of the Institute of Electrochemistry of the Ural. Branch of the USSR Academy of Sciences 2, 79–83.

    Google Scholar 

  4. Ivanovskii, L.Y., Lebedev, V.A. and Nekrasov, V.A. (1983) Anodic process in molten halides (in Russian), Nauka, Moskow, pp.117–137.

    Google Scholar 

  5. Vasin, B.D., Maslov, S.V., Raspopin, S.P. et al. (1990) Electrochemical behaviour of niobium in eutectic mixture of sodium and cesium chloride, Rasplavy 1, 48–52.

    Google Scholar 

  6. Alimova, Z.A., Yelizarova, N.R., Polyakow, Y.G. and Polyakova, L.P. (1992) Anodic dissolution of niobium in chloride and chloride-fluoride melts 28, 8, 1165–1170.

    CAS  Google Scholar 

  7. Mellors, J.N., Senderoff, S. (1965) Electrodeposition of Coherent Deposits of Refractory Metals, J. Electrochem. Soc. 112, 2, 266–268.

    Article  Google Scholar 

  8. Deeroly, A., Mukhtar, A., Winand, R. (1968) Comparative Study of the Electrocrystallisation of Tantalum and Niobium from Molten Fluoride Mixtures, J. Electrochem. Soc. 115,9, 905–912.

    Article  Google Scholar 

  9. Tumanova, N. Kh., Barchuk, L.P. (1983) Galvanoplating from ionic melts (in Russian), Teknica, Kyiv, pp.86–101.

    Google Scholar 

  10. Gitman, Y.B. (1970) Electrowinning and refining of titanium from molten salts (in Russian), Naukova Dumka, Kyiv.

    Google Scholar 

  11. Kosilo, B.I., Polyakov, Y.G., Polyakova, L.P. and Smirnov, A.Y. 1988, Electrochemical behaviour of Tantalum in CsCl-KCl-NaCl melt, Rasplavy 4, 83–87.

    Google Scholar 

  12. Konstantinov, V.I., Polyakov, G.Y., Stangrit, P.T. (1978) Cathodic electrolyses of chloride-fluoride melts and deposition of Tantalum, Electrochimica Acta 23, 8, 713–716.

    Article  CAS  Google Scholar 

  13. Kuznetsov, S.A., Polyakov, G.Y., Stangrit, P.T. (1982) Electroconductivity of fluoride-chloride melts and corrosion stability of oxide materials in these melts, Izv.Vuzov, Tsvetnaya Metallurgiya 4, 76–80.

    Google Scholar 

  14. Alimova, Z.A., Polyakov, Y.G. and Polyakova, L.P. (1988) Anodic dissolution of Tantalum in chloride and chloride-fluoride melts, Elektrokhimiya, 24, 9, 1205–1211.

    Google Scholar 

  15. Baraboshkin, A.N. (1976) Electrocrystallisation of metals from molten salts (in Russian), Nauka, Moskow.

    Google Scholar 

  16. Rosenkilde, C. and Ostvold, T. (1992) Absorption Spectroscopic Studies of Niobium(II), (III), (IV) and (V +Nb +metal) in the CsCl/NaCl-eutectic melt, EUCHEM Conf. on Molten Salts, De Haan, Belgium, P-26.

    Google Scholar 

  17. Maslov, S.V. and Vasin, B.D. (1993) Spectroscopic investigation of (Na-Cs)Cl molten salts, conaining niobium, Rasplavy 3, 66–70.

    Google Scholar 

  18. Cossi, D., Vivatelli, S. (1955) Spectrochemishe Studien über die niedrigeren Wertigkeiten des Niobs, Z. anorg. allg. Chem. B,279, 3-4, 165–172.

    Google Scholar 

  19. Valloton, N., Merbach, A.E. (1974) Electron transfer Spectra of the Hexachloro-and Hexabromoniobate(V) and Tantalate(V) anions, Helv. Chim. Acta 57, No8, 2345–2356.

    Article  CAS  Google Scholar 

  20. Picard, G., Bocage, P. (1991) The Niobium Chemistry in molten LiCl-KCl-eutectic, Materials Science Forum. Molten Salts Chemistry and Technology, Trans. Tech. Publications, Switzerland-Germany-USA, 73-75, 505–512.

    Google Scholar 

  21. Tumanova, N.K., Volkov, S.V., Babenkov, Y.A., Buryak, N.I. and Bandur, V.A. (1994) Electrochemical Behaviour of Niobium in low-temperature melts, Ukr. Khim. Zh. 60,7, 518–521.

    Google Scholar 

  22. Volkov, S.V., Tumanova, N.Kh., Babenkov, Y.A., Bandur, V.A., Buryak, N.I. (1997) The anodic behaviour of niobium and structure of its complexes in carbamide-chloride melts, J. Electroanal. Chem. 424, 13–17.

    Article  CAS  Google Scholar 

  23. Tumanova, N.Kh., Babenkov, Y.A., Buryak, N.I., Bogdanovich, L.V. (1999) Electrochemical properties of Niobium in carbamide-halide melts, Ukr. Khim. Zh. 65, 6, 48–52.

    Google Scholar 

  24. Vecchi, E., Zuliani, E. (1955) Molten carbamide supporting electrolyte in polarography, Ric. Sci., B 25, 9, 2667–2669.

    Google Scholar 

  25. Lovering, E. (1982) Molten Salts Technology, Pennington Press, N.Y., 460 pp.

    Google Scholar 

  26. Tkalenko, D.A. (1983) Electrochemistry of nitrate melts (in Russian), Naukova Dumka, Kyiv, pp. 196–208.

    Google Scholar 

  27. Bogdanovich, L.V., Tumanova, N.Kh., Mironyuk, G.I. and Lapshin, V.F. (1992) Inventor’s certificate No1723845 of the USSR: Electrolyte for the electrochemical treatment of niobium and its alloys (in Russian).

    Google Scholar 

  28. Delimarskii, Y.K., Podafa, B.P., Tumanova, B.P. Zarubitskii, O.Gand other (1978) Inventor’s certificate No637455 of the USSR: A melt for silver electroplating (in Russian).

    Google Scholar 

  29. Spasskaya, R.I. (1973) Thermodestruction of carbamide in low temperature,. Zh. Prikl. Khimii 46,2, 393–396.

    Google Scholar 

  30. Mirnyi, V.K., Prisyazhnyi, V.D. and Pushkaryov, V.D. (1987) Hydrogen bond and thermostability of mixed molten carbamide and ammonium halides, JJkr.Khim.Zh. 53,10, 1027–1029.

    Google Scholar 

  31. Volkov, S.V. and Buryak, N.I. (1971) Method of UV-VIS investigation of high-temperature molten salts, Teor. Exp. Khim. 2, 275–278.

    Google Scholar 

  32. Buryak, N.I., Bandur, V.A., Volkov, S.V. (1987) Coordination of Co(II) in phosphate and chloride melts, Zh. Neorg. Khim, 32, 2634–2638.

    Google Scholar 

  33. Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York.

    Google Scholar 

  34. Ershler, A.B. (1975) Electrosynthesis and bioelectrochemistry (in Russian), Nauka, Moskow, pp. 94–99.

    Google Scholar 

  35. Vas’ko, A.T. and Kovach, S.K. (1983) Electrochemistry of refractory metals (in Russian), Tekhnika, Kyiv

    Google Scholar 

  36. Lever, A.B.P. (1987) Electronic Spectroscopy of inorganic compounds (in Russian), Mir, Moskow, v.I, 494 p.,v.2, 444 p.

    Google Scholar 

  37. Volkov, S.V. and Yatsimirskii, K.B. (1977) Spectroscopy of molten salts (in Russian), Naukova Dumka, Kyiv.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tumanova, N., Boyko, O., Buryak, N., Kochetova, S. (2003). Electrochemistry of Niobium, Tantalum and Titanium in Low-Temperature Carbamide-Halide Melts. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics