Skip to main content

The Past, Present and Future of Ionic Liquids as Battery Electrolytes

  • Chapter
Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

Abstract

Batteries and similar electrochemical devices are a means to convert stored chemical energy directly into electrical power. They occupy a large niche in electrical power storage and generation applications. Batteries are used to provide low power over long times and high pulsed power for short times. They find applications in consumer appliances and electronics, industry, transportation, military systems and spacecraft. Batteries are simple in concept, but the wide range of applications results in a plethora of chemistries and designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jasinski, R. (1967) High Energy Batteries, Plenum Press, New York, p. vi.

    Google Scholar 

  2. Mamantov, G., (1980) Molten salt electrolytes in secondary batteries, in D. W. Murphy, J. Broadhead and B.C.H. Steele (eds.), Materials for Advanced Batteries, Plenum Press, New York, pp. 111–122.

    Chapter  Google Scholar 

  3. Gordon, R. S. (1982) Sodium-sulfur cells with beta alumina electrolyte, in C. W. Tobias (ed.), Assessment of Research Needs for Advanced Battery Systems, National Academy Press, Washington, DC, p.l39.

    Google Scholar 

  4. Fannin, Jr., A. A., Floreani, D. A., King, L. A., Landers, J. S., Piersma, B. J., Stech, D.J., Vaughn, R. L., Wilkes, J.S. and Williams, J. L., (1984) Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities and viscosities, J. Phys. Chem. 88, 2614–2621.

    Article  CAS  Google Scholar 

  5. Bonhote, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M., (1996) Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35, 1168–1178.

    Article  CAS  Google Scholar 

  6. Linden, D. (1984) Handbook of Batteries and Fuel Cells, McGraw-Hill Book Co., New York, p. C-4.

    Google Scholar 

  7. Specific conductivity calculated from equivalent conductivities reported in Mukherjee, L. M., and Boden, D. P. (1969) Equilibria in propylene carbonate. I. Viscosity and conductance studies of some lithium and quaternary ammonium salts, J. Phys. Chem. 74, 1942–1946.

    Article  Google Scholar 

  8. Boxall, L. G., Jones, H. L., and Osteryoung, R. A. (1973) Solvent equilibria of AlCl3-NaCl melts, J. Electrochem. Soc. 120, 223–231.

    Article  CAS  Google Scholar 

  9. Lipsztajn, M., and Osteryoung, R. A. (1983) Increased electrochemical window in ambient temperature neutral ionic liquids, J. Electrochem. Soc. 130, 1312–1318.

    Article  Google Scholar 

  10. Bard, A.J. and Faulkner, L. R. (1980) Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, New York, p. 721.

    Google Scholar 

  11. Guidotti, R. A (1995) Thermal batteries: A technology review and future directions, Proceedings of the International SAMPE Technology Conference 27, 807–818.

    CAS  Google Scholar 

  12. Nardi, J., Hussey, C. L., Erbacher, J. K., King, L.A., and Fannin, A. A. (1978) Molybdenum chloride-tetrachloroaluminate thermal battery, U.S. Patent 4, 117,207.

    Google Scholar 

  13. Hussey, C.L. (1994) The electrochemistry of room-temperature haloaluminate molten salts, in G. Mamantov and A. I. Popov (eds.), Chemistry of Nonaqueous Solutions, VCH Publisher Inc., New York, pp.227–276.

    Google Scholar 

  14. Bohm, H., and Steiner, R. (1998) The importance of the molten salt electrolyte for the ZEBRA battery system, Molten Salt Forum 5-6, 517–520.

    CAS  Google Scholar 

  15. Kaun, T. D., Nelson, P. A., Redey, L., Vissers, D. R., and Henriksen, G. L. (1993) High temperature lithium/sulfide batteries, Electrochim. Acta 38, 1269–1287.

    Article  CAS  Google Scholar 

  16. Henriksen, G. L. and Vissers, D. R. (1994) Lithium-aluminum/iron sulfide batteries, J. Power Sources 51, 115–128.

    Article  CAS  Google Scholar 

  17. Vissers, D. R., Redey, L., and Kaun, T. D. (1989) Molten salt electrolytes for high-temperature lithium cells, J. Power Sources 26, 37–48.

    Article  CAS  Google Scholar 

  18. Mamantov, G, Tanemoto, K., and Ogata, Y. (1983) Two-plateau rechargeable sodium/sulfur(IV) molten chloroaluminate cell, J. Electrochem. Soc. 130, 1528–1531.

    Article  CAS  Google Scholar 

  19. Caja, J., Dunstan, D., and Mamantov, G. (1991) A practical sodium/sulphur(IV) molten chloroaluminate cell, Power Sources 13, 333–346.

    CAS  Google Scholar 

  20. Selman, J.R. (1993) Research, development, and demonstration of molten carbonate fuel cell systems, in L. J. M. J. Blomen and M. N. Mugerwa (eds.), Fuel Cell Systems, Plenum Press, New York, pp. 345–463.

    Google Scholar 

  21. Wendt, H., Brenscheidt, T., and Kah, K. (1999) Different molten alkali carbonate eutectics as fuel cell electrolytes for MCFCs, Molten Salts Bulletin 67, 2–17.

    Google Scholar 

  22. Hurley, F.H. (1948) Electrodeposition of aluminum, U.S. Patent 2,446, 331.

    Google Scholar 

  23. Hurley, F., and Wier, T. (1951) Electrodeposition of metals from fused quaternary ammonium salts, J. Electrochem. Soc. 98, 203–206.

    Article  CAS  Google Scholar 

  24. Takahashi, S., Koura, N., and Nakamima, R. (1986) Characteristics of the aluminum chloride-1-butylpyridinium chloride electrolyte for the aluminum/iron sulfide (FeS2) secondary cell, Denki Kagaku 54 263–268.

    CAS  Google Scholar 

  25. Sanders, J, Ward, E., and Hussey, C. L. (1986) Aluminum bromide-1-methy1-3-ethylimidazolium bromide ionic liquids. I. Densities, viscosities, electrical conductivities, and phase transitions, J. Electrochem. Soc. 133, 325–30.

    Article  CAS  Google Scholar 

  26. Vaughn, R.L. (1992) Molten-electrolyte batteries with active metal anodes, U.S. Patent 5,171,649.

    Google Scholar 

  27. Melton, T. J., Joyce, J., Maloy, J.T., and Wilkes, J. S. (1990) Electrochemical studies of sodium chloride as a Lewis buffer for room temperature chloroaluminate molten salts, J. Electrochem. Soc 137, 3865–3869.

    Article  CAS  Google Scholar 

  28. Vestergaard, B., Bjerrum, N. J., Petrushina, I., Hjuler, H. A., Berg, R. W., and Begtrup, M. (1993) Molten triazolium chloride systems as new aluminum battery electrolytes, J. Electrochem. Soc. 140, 3108–3113.

    Article  CAS  Google Scholar 

  29. Auborn, J.J. and Barberio, Y. L. (1985) An ambient temperature secondary aluminum electrode: its cycling rates and its cycling efficiencies, J. Electrochem. Soc. 132, 598–601.

    Article  CAS  Google Scholar 

  30. Jones, S.D., and Blomgren, G. E., (1989) Low-temperature molten salt electrolytes based on aralkyl quaternary or ternary onium salts, J. Electrochem. Soc. 136, 424–427.

    Article  CAS  Google Scholar 

  31. Blomgren, G.E., and Jones, S. D. (1993) Low temperature molten compositions comprised of quaternary alkyl phosphonium salts, U.S. Patent 5,188,914.

    Google Scholar 

  32. Wilkes, J.S., and Zaworotko, M. J. (1992) Air and water stable 1-ethy1-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. 965–967.

    Google Scholar 

  33. Fuller, J. Carlin, R.T., DeLong, H.C., and Haworth, D., (1994) Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts, J. Chem. Soc., Chem. Commun. 299–300.

    Google Scholar 

  34. Fuller, J, Carlin, R. T., Osteryoung, R.A. (1997) The room temperature ionic liquid 1-ethy1-3-methylimidazolium tetrafiuoroborate: electrochemical couples and physical properties, J. Electrochem. Soc. 144, 3881–3886.

    Article  CAS  Google Scholar 

  35. Mutch, M.L. and Wilkes, J. S. (1998) Thermal analysis of 1-ethy1-3-methylimidazolium tetrafluoroborate molten salt, Electrochem. Soc. Proceedings 98-11, 254–260.

    CAS  Google Scholar 

  36. Golding, J., MacFarlane, D.R., and Forsyth, M. (1998) Imidazolium room temperature molten salt systems, Molten Salt Forum 5-6, 589–592.

    CAS  Google Scholar 

  37. Cooper, E.I., and O’Sullivan, E. J. M. (1992) New, stable, ambient-temperature molten salts, Proc. Electrochem. Soc. 16, 386–396.

    CAS  Google Scholar 

  38. Sun, J., MacFarlane, D. R., and Forsyth, M. (1997) Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion, Ionics 3, 356–362.

    Article  CAS  Google Scholar 

  39. Angell, C. A., Fan, J., Liu, C., Sanchez, E. and Xu, K. (1994) Li-conducting ionic rubbers for lithium battery and other applications, Solid State Ionics 69, 343–353.

    Article  CAS  Google Scholar 

  40. Angell, C. A., Liu, C., and Sanchez, E., (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity, Nature 362, 137–139.

    Article  CAS  Google Scholar 

  41. Angell, C. A., Xu, K., Zhang, S-S., and Videa, M. (1996) Variations on the salt-polymer electrolytes theme for flexible solid electrolytes, Solid State Ionics 86-88, 17–28.

    Article  CAS  Google Scholar 

  42. Fuller, J., Breda, A. C., and Carlin, R. T. (1997) Ionic liquid-polymer gel electrolytes, J. Electrochem. Soc. 144, L67–L69.

    Article  CAS  Google Scholar 

  43. Fuller, J., Breda, A.C., and Carlin, R. T. (1998) Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids, J. Electroanal. Chem. 459, 29–34.

    Article  CAS  Google Scholar 

  44. Carlin, R. T., Fuller, J., Kuhn, W. K., Lysaught, M.J., and Trulove, P. C. (1996) Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes, J. Appl. Electrochem. 26, 1147–1160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilkes, J.S. (2003). The Past, Present and Future of Ionic Liquids as Battery Electrolytes. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics