Skip to main content

Ionic Liquids in the Nuclear Industry

Solutions for the Nuclear Fuel Cycle

  • Chapter
Green Industrial Applications of Ionic Liquids

Part of the book series: NATO Science Series ((NAII,volume 92))

Abstract

The nuclear fuel cycle spans a range of processes from the mining of uranium ore to the disposing of the radioactive waste produced throughout the cycle. In between fall such areas as the production of fuel for nuclear reactors, the generation of electricity through the burning of fuel and the processing the spent fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilson, P.D. (1996) Basic Principles, in P.D. Wilson (ed.), The Nuclear Fuel Cycle, Oxford University Press, Oxford, pp. 1–17.

    Google Scholar 

  2. Katz, J.J., and Rabinowitch, E. (1951) The Chemistry of Uranium: The Element, Its Binary and Related Compounds, Dover Publications, Inc., New York.

    Google Scholar 

  3. Marsh, G. and Eccles, H. (1996) Fuel fabrication, in P.D. Wilson (ed.), The Nuclear Fuel Cycle, Oxford University Press, Oxford, pp. 41–66.

    Google Scholar 

  4. Denniss, I.S. and Jeapes, A.P. (1996) Reprocessing irradiated fuel, in P.D. Wilson (ed.), The Nuclear Fuel Cycle, Oxford University Press, Oxford, pp. 116–137.

    Google Scholar 

  5. Stoller, S.M. and Richards, R.B. (1961) Reactor Handbook, Interscience Publishers, Inc., New York

    Google Scholar 

  6. Laidler, J.J., Battles, J.E., Miller, W.E., Ackerman, J.P. and Carls, E.L. (1997) Development of pyroprocessing technology, Progress in Nuclear Energy 31, 131–140.

    Article  CAS  Google Scholar 

  7. Skiba, O.V., Savochkin, Y.P., Bychkov, A.V., Porodnov, Babikov, L.G., and Vavilov, S.K. (1993) Technology of Pyroelectrochemical reprocessing and production of nuclear fuel, GLOBAL 2, 1344–1350.

    CAS  Google Scholar 

  8. Ackerman, J.P., Johnson, T.R., Chow, L.S.H., Carls, E.L., Hannum, W.H. and Laidler, J.J. (1997) Treatment of wastes in the IRF fuel cycle, Progress in Nuclear Energy 31, 141–154.

    Article  CAS  Google Scholar 

  9. Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chemical Reviews 99, 2071–2083.

    Article  CAS  Google Scholar 

  10. Holbrey, J.D., and Seddon, K.R. (1999) Ionic liquids, Clean Products and Processes 1, 223–236.

    Google Scholar 

  11. Seddon, K.R. (1996) Room-temperature ionic liquids: neoteric solvents for clean catalysis. Kinetics and Catalysis 37, 693–697.

    CAS  Google Scholar 

  12. De Waele, R., Heerman, L., and D’Olieslager, W. (1982) Electrochemistry of uranium(IV) in acidic AlCl3+N-(Normal-butyl)pyridinium chloride room-temperautre molten salts, J. Electroanal. Chem., 142, 137–146.

    Article  Google Scholar 

  13. Hitchcock, P.B., Mohammed, T.J., Seddon, K.R., Zora, J.A., Hussey, C.L., and Ward, E.H. (1986) 1-Methy1-3-ethylimidazolium hexachlorouranate(IV) and 1-methy1-3-ethylimidazolium tetrachlorodioxouranate(VI)-synthesis, structure, and electrochemistry in a room-temperature ionic liquid, Inorg. Chim. Acta 113, L25–L26.

    Article  CAS  Google Scholar 

  14. Anderson, C.J., Deakin, M.R., Choppin, G.R., D’Olieslager, W., Heerman, L., and Pruett, D.J. (1991) Spectroscopy and electrochemistry of U(IV)/U(III) in basic aluminum chloride-1-ethy1-3-methylimidazolium chloride, Inorganic Chemistry, 30, 4013–4016.

    CAS  Google Scholar 

  15. Dai, S., Toth, L.M., Hayes, G.R., and Peterson, J.R. (1997) Spectroscopic investigation of effect of Lewis basicity on the valent-state of an uranium(V) chloride complex in ambient temperature melts, Inorg. Chim. Acta 256, 143–145.

    Article  CAS  Google Scholar 

  16. Dai, S., Shin, Y.S., Tom, L.M., and Barnes, C.E. (1997) Comparative UV-Vis studies of uranyl chloride complex in two basic ambient-temperature melt systems: The observation of spectral and thermodynamic variations induced via hydrogen bonding, Inorg. Chem. 36, 4900–4902.

    Article  CAS  Google Scholar 

  17. Anderson, C.J., Choppin, G.R., Pruett, D.J., Costa, D. and Smith, W. (1999) Electrochemistry and spectroscopy of UO in acidic AlCl3-EMIC, Radiochimica Acta 84, 31–36.

    CAS  Google Scholar 

  18. Dai, S., Ju, Y.H., and Barnes, C.E. (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids, J. Chem. Soc., Dalton Trans., 1201–1202.

    Google Scholar 

  19. Gau, W.J., and Sun, I.W. (1996) Electrochemical and spectroscopic studies of ytterbium in the aluminum chloride-1-methy1-3-ethylimidazolium chloride room temperature molten salt, J. Electorchem. Soc. 143, 170–174.

    Article  CAS  Google Scholar 

  20. Jeng, E.G.S., and Sun, I.W. (1997) Electrochemistry of tellurium(IV) in the basic aluminum chloride-1-methy1-3-ethylimidazolium chloride room temperature molten salt, J. Electorchem. Soc. 144, 2369–2374.

    Article  CAS  Google Scholar 

  21. Jeng, E.G.S., and Sun, I.W. (1998) Electrochemistry of thallium in the basic aluminum chloride-1-methy1-3-ethylimidazolium chloride room temperature molten salt, J. Electorchem. Soc. 145, 1196–1201.

    Article  CAS  Google Scholar 

  22. Gau, W.J., and Sun, I.W. (1996) Spectroscopic and electrochemical studies of europium(III) chloride in aluminum chloride-1-methy1-3-ethylimidazolium chloride room temperature molten salts, J. Electrochem. Soc. 143, 914–919.

    Article  CAS  Google Scholar 

  23. Fields, M., Thied, R.C., Seddon, K.R., Pitner, W.R., and Rooney, D.W., Treatment of Molten Salt Reprocessing Wastes, World Patent WO9914160, 25 March 1999.

    Google Scholar 

  24. Thied, R.C., Seddon, K.R., Pitner, W.R., and Rooney, D.W., Nuclear Fuel Reprocessing, World Patent WO9941752, 19 August 1999.

    Google Scholar 

  25. Fields, M., Hutson, G.V., Seddon, K.R., and Gordon, C.M., Ionic Liquids as Solvents, World Patent WO9806106, 12 February 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pitner, W.R. et al. (2003). Ionic Liquids in the Nuclear Industry. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics