Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 92))

Abstract

The conversion of oil shale into value-added products is a challenging goal for chemistry and chemical engineering. There exists an urgent need for the development of efficient processes that are capable of providing useful products, such as alternative synthetic fuels or high-quality chemical feedstock. The first step in the development of such processes is the development of efficient means to characterise the various components of the shales.

We have examined the use of two different types of ionic liquids for their ability to extract organic compounds, particularly oxygenated compounds, from Estonian oil shale kerogen. 1-Buty1-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-buty1-3-methylimidazolium tetrachloroaluminate, [brnim][AlCl4], were synthesised and applied to the kerogen extraction at various temperatures. In addition, the effect of Lewis acidity of the chloroaluminate salt was examined by varying the AlCl3:[bmim]Cl ratio.

At room temperature, mere was no evidence of extraction from the kerogen using either ionic liquid. However, these chemical processes are favoured at elevated temperatures, up to the thermal degradation temperature of kerogen, ≈400 °C. As expected, at 175 °C, the extraction yield of soluble products was increased ten times over that obtained using conventional organic solvents, such as hexane and dichloromethane. We also observed significant differences in the extraction behaviour between different types of Estonian oil shale, because of the unique chemical composition and structure of their organic components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kershaw, J.R. (1997) “Comments on the role of the solvent in supercritical fluid extraction of coal”, Fuel, 76(5), 453–454.

    Article  CAS  Google Scholar 

  2. Koel, M., Bondar, E. (1998) “Application of Supercritical Fluid Extraction to Organic Geochemical Studies”, Fuel, 77(3), 211–213; Bondar, E., Koel, M., Liiv, M. (1998) “A Comparative Study of the Composition of Biomarkers in SFE and Solvent Extracts of Oil Shales”, Fuel, 77(3), 215-219.

    Article  Google Scholar 

  3. Luik, H. (1994) “Thermal Destruction Methods for Characterizing Kerogen”, Oil Shale 11(3), 193–209.

    Google Scholar 

  4. Love G.D., Snape C.E., Carr A.D., Houghton R.C. (1996) “Changes in Molecular Biomarker and Bulk Carbon Skeletal Parameters of Vitrinite Concentrates as a Function of Rank”, Energy & Fuels, 101, 149–157.

    Article  Google Scholar 

  5. Yoshida, R., Miyazawa, M., Yoshida, T., Narita, H., Maekawa, Y. (1996) “Chemical-Structure Changes in Condor Shale Oil and Catalytic Activities During Catalytic Hydrotreatment”, Fuel, 75(1), 99–102.

    Article  CAS  Google Scholar 

  6. Kralert, P.G., Alexander, R., Kagi, R.I. (1995) “An Investigation of Polar Constituents in Kerogen and Coal Using Pyrolysis-Gas Chromatography-Mass Spectrometry with In-Situ Methylation”, Org. Geochem., 23(7), 627–639.

    Article  CAS  Google Scholar 

  7. Solash, J., Cronauer, D.C., Kobylinski, T.P. (1983) “Dissolving Western U.S. oil shale kerogen at low temperatures”, Abstr. Pap. Amer. Chem. Soc. 185, 66-GEOC.

    Google Scholar 

  8. Vermeulen, T., Grens, E.A., Holten, R.R. (1982) “Coal liquefaction in an inorganic-organic medium”, US Patent 4, 333,815.

    Google Scholar 

  9. Olah, G.A., (1983) “Liquefaction of Coals using Recyclable Superacid Catalyst”, US Patent 4,394,247.

    Google Scholar 

  10. Hurley, F.H., Wier, T.P. (1951) “Electrodeposition of Metals from Fused Quaternary Ammonium Salts”, J. Electrochem. Soc., 98, 203–206.

    Article  CAS  Google Scholar 

  11. Hurley, F.H., Wier, T.P. (1951) “The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature”, J. Electrochem. Soc., 98, 207–212.

    Article  CAS  Google Scholar 

  12. Perry, R.L., Jones, K.J., Scott, W.D., Qing Liao, Hussey, C.L. (1995) “Densities, Viscosities, and Conductivities of mixtures of selected organic cosolvents with the Lewis Basic Aluminum Chloride+ 1-methy1-3-ethylimidazolium chloride molten salt”, J. Chem. Eng. Data, 40(3), 615–619.

    Article  CAS  Google Scholar 

  13. Appleby, D., Hussey, C.L., Seddon, K.R., Turp, J.E. (1986) “Room-temperature Ionic Liquids as Solvents for Electronic Absorption Spectroscopy of Halide Complexes”, Nature, 323, 614–615.

    Article  CAS  Google Scholar 

  14. Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., Rogers, R.D. (1998) “Room Temperature Ionic Liquids as Novel Media for Clean Liquid-Liquid Extraction”, J. Chem. Soc., Chem. Commun, 16, 1765–1766.

    Google Scholar 

  15. Adams, C.J., Earle, M.J., Roberts, G., Seddon, K.R. (1998) “Friedel-Crafts Reactions in Room-Temperature Ionic Liquids”, J. Chem. Soc., Chem. Comm., 19, 2097–2098.

    Google Scholar 

  16. Stark, A., MacLean, B.L., Singer, R.D. (1999) “1-ethy1-3-methylimidazolium halogenoaluminate Ionic Liquids as Solvents for Friedel-Crafts Acylation Reactions of Ferrocene”, J. Chem. Soc-Dalton Trans., 163–66.

    Google Scholar 

  17. Fischer, T., Sethi, A., Welton, T., Woolf, J. (1999) “Diels-Alder reactions in room-temperature ionic liquids”, Tetrahedron Lett., 40(4), 793–796.

    Article  CAS  Google Scholar 

  18. Chauvin, Y., Olivier, H., Wyrvalski, C.N., Simon, L.C., deSouza, R.F. (1997) “Oligomerization of n-butenes catalyzed by Nickel complexes dissolved in organochloroaluminate ionic liquids”, J. Catal, 165, 275–278.

    Article  CAS  Google Scholar 

  19. Dyson, P.J., Ellis, D.J., Parker, D.G., Welton, T. (1999) “Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst”, J. Chem. Soc., Chem. Comm., 1, 25–26.

    Google Scholar 

  20. Suarez, P.Z., DuUius, J.E.L., Einloft, S., deSouza, R.F., Dupont, J. (1996) “The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes”, Polyhedron, 15(7), 1217–1219.

    Article  CAS  Google Scholar 

  21. Wilkes, J. S., Levisky, J.A., Wilson, R.A., Hussey, C.L. (1982) “Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis”, Inorg. Chem., 21(3), 1263–1264.

    Article  CAS  Google Scholar 

  22. Tait, S., Osteryoung, R.A. (1984) “Infrared Study of Ambient-Temperature Chloroaluminates as a Function of Melt Acidity”, Inorg. Chem., 23(25), 4352–4360.

    Article  CAS  Google Scholar 

  23. Wilkes, J.S., Zaworodtko, M.J. (1992) “Air and Water Stable 1-ethy1-3-methylimidazolhim Based Ionic Liquids”, J. Chem. Soc., Chem. Comm., 13, 965–967.

    Article  Google Scholar 

  24. Miron, Y. (1983) “Thermal Degradation of Oil Shale with Molten Nitrates”, Thermochim. Acta, 65, 213–237.

    Article  CAS  Google Scholar 

  25. Hues, A.D., Rofer-DePoorter, C.K., Rogers, R.N. (1984) “Processing of Oil shale in Molten Hydroxides”, Abstr. Pap. Amer. Chem. Soc., 187, 54-PETR.

    Google Scholar 

  26. Nomura, M., Muratani, T., Tajima, Y., Murata, S. (1995) “Liquefaction of Japanese Bituminous Akabira coal catalyzed by molten salts under D2 atmosphere”, Fuel Proc. Tech., 43, 213–225.

    Article  CAS  Google Scholar 

  27. Larsen, J.W., Earnest, S. (1979) “Hydrocracking mechanisms in molten zinc chloride; Isotope scrambling and pyrolysis studies”, Fuel Proc. Tech., 2(2), 123–130.

    Article  CAS  Google Scholar 

  28. Bugle, R.C., Wilson, K., Olsen, G., Wade Jr., L.G., Osteryoung, R.A. (1978) “Oil-shale kerogen: low temperature degradation in molten salts”, Nature, 274, 578–580.

    Article  CAS  Google Scholar 

  29. D.S. Newman, Winans, R.E., McBeth, R.L. (1984) “Reactions of Coal and Model Coal compounds in Room Temperature Molten Salt Mixtures”, J. Electrochem. Soc. 13(5), 1079–1083.

    Article  Google Scholar 

  30. Newman, D.S., Kinstle, T.H., Thambo, G. (1987) “The acylation of coal and model coal compounds in room temperature molten salts”, Proc. Intern. Symp. on Molten Salts, ed. G. Mamontov, C. Hussey, et al.

    Google Scholar 

  31. Freemantle, M. (1998), “Designer solvents — Ionic liquids may boost clean technology development”, Chem. Eng. News, 76 [March 30th], 32–37.

    Article  Google Scholar 

  32. Patell, Y. (1994) “The dissolution of kerogens”, M.Phil. thesis, University of Sussex.

    Google Scholar 

  33. Dutta, L.M. (1995)“The dissolution of Liassic kerogen and coal”, M.Phil. thesis, University of Sussex.

    Google Scholar 

  34. Zawodzinski, T., Osteryoung, R.A. (1989) “Donor-acceptor properties of ambient-temperature chloroaluminate melts”, Inorg. Chem., 28(9), 1710–1715.

    Article  CAS  Google Scholar 

  35. Ullmann’s Encyclopedia of Industrial Chemistry, 5th edition (1991) Vol. A18, pp. 101–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koel, M., Hollis, K., Rubin, J., Lombardo, T., Smith, B. (2003). Ionic Liquids for Oil Shale Treatment. In: Rogers, R.D., Seddon, K.R., Volkov, S. (eds) Green Industrial Applications of Ionic Liquids. NATO Science Series, vol 92. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0127-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0127-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1137-5

  • Online ISBN: 978-94-010-0127-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics