Skip to main content

Tunnelling Induced Fluorescence as a Probe of Electromagnetic Interaction at Nanometre Proximity

  • Chapter
Organic Nanophotonics

Part of the book series: NATO Science Series ((NAII,volume 100))

  • 392 Accesses

Abstract

Fluorescence induced by the tunnelling current of a scanning tunnelling microscope is used to investigate the electromagnetic coupling of a metal tip and a metal sample. Sub-atomic scale modifications of the tunnelling junction geometry cause spectral shifts of the fluorescence. Such shifts are observed when the tip is vertically displaced relative to a flat sample surface. Similarly, monatomic sample steps close to the tip position shift the fluorescence. These experimental results are consistent with model calculations of the electromagnetic response of an appropriate tip-sample geometry. We find that for sharp tips the electromagnetic coupling of the tip and the sample is confined to a lateral range of a few nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Surface Plasmons, H. Raether (Springer Tracts in Modern Physic 111, Berlin 1988)

    Google Scholar 

  2. Optical properties of Metal Clusters, U. Kreibig and M. Vollmer (Springer Series in Materials Science 25, Berlin 1995).

    Book  Google Scholar 

  3. H.-J. Güntherodt, D. Anselmetti, E. Meyer (Eds.), Forces in Scanning Probe Methods, NATO ASI Series E, Vol. 286 (Kluwer, Dordrecht, 1995).

    Google Scholar 

  4. D. W. Pohl and D. Courjon (eds.), Near Field Optics, NATO ASI Series E, Vol. 241 (Kluwer, Dordrecht, 1993).

    Google Scholar 

  5. J. K. Gimzewski, J. K. Sass, R. R. Schüttler, J. Schott, Europhys. Lett. 8, 435 (1989).

    Article  ADS  Google Scholar 

  6. P. Johansson, R. Monreal, S. P. Apell, Phys. Rev. B 42, 9210 (1990).

    Article  ADS  Google Scholar 

  7. R. Berndt, J. K. Gimzewski, P. Johansson, Phys. Rev. Lett. 67, 3796 (1991).

    Article  ADS  Google Scholar 

  8. B. N. J. Persson and A. Baratoff, Phys. Rev. Lett. 68, 3224 (1992).

    Article  ADS  Google Scholar 

  9. M. Tsukada, T. Schimizu, K. Kobayashi, Ultramicroscopy 42–44, 360 (1992).

    Article  Google Scholar 

  10. S. Ushioda, Y. Uehara, M. Kuwahara, Appl. Surf. Sci. 60/61, 448 (1992).

    Article  ADS  Google Scholar 

  11. J. Aizpurua, G. Hoffmann, S. P. Apell, R. Berndt, Phys. Rev. Lett. 89, 156803 (2002).

    Article  ADS  Google Scholar 

  12. G. Hoffmann, L. Libioulle, R. Berndt, Phys. Rev. B, 65, 212107 (2002).

    Article  ADS  Google Scholar 

  13. G. Hoffmann, J. Kroger, R. Berndt, Rev. Sei. Instrum. 73, 305 (2002).

    Article  ADS  Google Scholar 

  14. R. Berndt, J. K. Gimzewski, P. Johansson, Phys. Rev. Lett. 71, 3493 (1993).

    Article  ADS  Google Scholar 

  15. R. Berndt and J. K. Gimzewski, Phys. Rev. B 48 4746 (1993)

    Article  ADS  Google Scholar 

  16. V. Sivel, R. Coratger, F. Ajustron, J. Beauvillain, Phys. Rev. B 50 5628 (1994).

    Article  ADS  Google Scholar 

  17. We use ‘counts’ to indicate the number of detected photons while ‘photons’ refers to the estimated number of emitted photons, i.e., the data is corrected for the detection efficiency.

    Google Scholar 

  18. J. Aizpurua, S. P. Apell, R. Berndt, Phys. Rev. B 62, 2065 (2000).

    Article  ADS  Google Scholar 

  19. R.W. Rendell, D.J. Scalapino, B. Mühlschlegel, Phys. Rev. Lett. 41, 1746 (1978).

    Article  ADS  Google Scholar 

  20. R. Péchou et al, J. Phys. III 6, 1441 (1996).

    Google Scholar 

  21. Handbook of Optical Dielectric Constants of Solids, D. Palik (ed.) (Naval Research Laboratory, Washington D.C., 1985).

    Google Scholar 

  22. K. Stokbro, U. Quaade, F. Grey, Appl. Phys. A: Mater. Sei. Process. 66, S907 (1998).

    Article  ADS  Google Scholar 

  23. R. Berndt et al., Science 262, 1425 (1993).

    Article  ADS  Google Scholar 

  24. I. I. Smolyaninov, Surf. Sci. 364, 79 (1996).

    Article  ADS  Google Scholar 

  25. S. Evoy, F. D. Pardo, P. M. S. John, H. G. Craighead, J. Vac. Sei. Technol. A 15, 1438 (1997).

    Article  ADS  Google Scholar 

  26. D. Fujita et al., Surf. Sci. 454–456, 1021 (2000).

    Article  ADS  Google Scholar 

  27. G. E. Poirier, Phys. Rev. Lett. 86, 83 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoffmann, G., Aizpurua, J., Apell, S.P., Berndt, R. (2003). Tunnelling Induced Fluorescence as a Probe of Electromagnetic Interaction at Nanometre Proximity. In: Charra, F., Agranovich, V.M., Kajzar, F. (eds) Organic Nanophotonics. NATO Science Series, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0103-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0103-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1280-8

  • Online ISBN: 978-94-010-0103-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics