Skip to main content

Transport and Optical Properties of DNA

  • Chapter
Organic Nanophotonics

Part of the book series: NATO Science Series ((NAII,volume 100))

  • 398 Accesses

Abstract

The structure of DNA is now very well known. The two helices that form the backbone are made up of alternating sugar and phosphate groups. Attached to the sugars are the bases, organic compounds consisting of one or two planar heterocycles and associated N, O, and H. There are four bases in DNA—guanine, cytosine, adenine, and thymine. In what follows these will be abbreviated G, C, A, and T, respectively. Hydrogen bonds connect one base from each helix with its complementary base from the other helix. Thus G is paired with C, A with T. The bases all have closed electronic shells. Guanine has the distinction of its highest occupied molecular orbital (HOMO) having the highest energy. Thus holes added to a DNA stack would tend to sit on a G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rakhmanova, S.V. and Conwell, E.M. (2001) Polaron Motion in DNA, J. Phys. Chem. B105, 2056–2061.

    Google Scholar 

  2. Turro, N.J. and Barton, J.K (1998) Paradigms, supermolecules, electron transfer and chemistry at a distance. What’s the problem? The science or the paradigm? JBIC, J. Biol. Inorg. Chem. 3, 201–209.

    Article  Google Scholar 

  3. Meggers, E., Michel-Beyerle, M.E. and Giese, B. (1998) Sequence Dependent Long Range Transport in DNA, J. Am. Chem. Soc. 120, 12950–12955.

    Article  Google Scholar 

  4. Giese, B. (2000) Long Distance Charge Transport through DNA: The Hopping Mechanism, Acc. Chem. Res. 33, 631–636.

    Article  Google Scholar 

  5. Jortner, J., Bixon, M., Langenbacher, T., and Michel-Beyerle, M. (1998) Charge transfer and transport in DNA, Proc. Natl. Acad. Sci. USA 95, 12759–12765.

    Article  ADS  Google Scholar 

  6. Schuster, G.B. (2000) Long-Range Charge Transfer in DNA: Transient Structural Distortions Control the Distance Dependence, Acc. Chem. Res. 33, 253–260.

    Article  Google Scholar 

  7. Williams, T.T., Odom, D.T. and Barton, J.K. (2000) Variations in DNA Charge Transport with Nucleotide Composition and Sequence, J. Am. Chem. Soc. 122, 9048–9049.

    Article  Google Scholar 

  8. Giese, B. et al. (2001) Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling, Nature 412, 318–320.

    Article  ADS  Google Scholar 

  9. Seidel, C.A.M., Schulz, A. and Sauer, M.H.M. (1996) Nucleobase-Specific Quenching of Fluorescent Dyes. 1. Nucleobase one-Electron Redox Potentials and Their Correlation with Static and Dynamic Quenching Efficiencies, J. Phys. Chem. 100, 5541–5553.

    Article  Google Scholar 

  10. Steenken, S. and Jovanovic, S.C. (1997) How Easily Oxidizable is DNA? One-Electron Reduction Potentials of Adenosine and Guanosine Radicals in Aqueous Solution, J. Am. Chem. Soc. 119, 617–618.

    Article  Google Scholar 

  11. Hush, N.S. and Cheung, A.S. (1975) Ionization potentials and donor properties of nucleic acid bases and related compounds, Chem. Phys. Lett. 34 11–13.

    Article  ADS  Google Scholar 

  12. Lifschitz, C., Bergman, D. and Pullman, B. (1967) The ionization potentials of biological purines and pyrimidines, Tetrahedron Lett. 46, 4583–4586.

    Article  Google Scholar 

  13. Sugiyama, H. and Saito, I. (1996) Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5′ Localization of HOMO of Stacked GG Bases in B-Form DNA, J. Am. Chem. Soc. 118, 7063–7068.

    Article  Google Scholar 

  14. Giese, B. and Spichty, M. (2000) Long Distance Charge Transport through DNA: Quantification and Extension of the Hopping Model, CHEMPHYSCHEM 1, 195–198.

    Article  Google Scholar 

  15. Bruinsma, R., Gruner, G., D’Orsogna, M.R. and Rudnick, J. (2000) Fluctuation-Facilitated Charge Migration along DNA, Phys. Rev. Lett. 85, 4393–4396.

    Article  ADS  Google Scholar 

  16. Grozema, F.C., Berlin, Yu.A. and Siebbeles, L.D.A. (1999) Sequence-Dependent Charge Transfer in Donor-DNA-Acceptor Systems: A Theoretical Study, Int. J. Quantum Chem. 75, 1009–1016.

    Article  Google Scholar 

  17. Grozema, F.C., Berlin, Yu.A. and Siebbeles, L.D.A. (2000) Mechanism of Charge Migration through DNA: Molecular Wire Behavior, Single Step-Tunneling or Hopping? J. Am. Chem. Soc. 122, 10903–10909.

    Article  Google Scholar 

  18. Barnett, R.N. et al. (2001) Charge Migration in DNA: Ion-Gated Transport, Science 294, 567–571.

    Article  ADS  Google Scholar 

  19. Gomez-Navarro, C. et al. (2002) Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior, Proc. Natl. Acad. Sci. USA 99, 8484–8487.

    Article  ADS  Google Scholar 

  20. Tran, P., Alavi, B. and Gruner, G. (2000) Charge Transport along the λ-DNA Double Helix, Phys. Rev. Lett. 85, 1564–1567.

    Article  ADS  Google Scholar 

  21. Helgren, E., et al. (2001) Electrons on the double helix: optical experiments on native DNA, ArXiv: condmat/0111299 v1, 1–5.

    Google Scholar 

  22. Fink, H.-W. and Schonenberger, C. (1999) Electrical conduction through DNA molecules, Nature 398, 407–410.

    Article  ADS  Google Scholar 

  23. de Pablo, P.J. et al. (2000) Absence of dc-Conductivity in λ-DNA, Phys. Rev. Lett. 85, 4992–4995.

    Article  ADS  Google Scholar 

  24. Yoo, K-H. et al. (2001) Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules, Phys. Rev. Lett. 87, 19802–1 – 19802–4.

    Google Scholar 

  25. Lee, H-Y. et al. (2002) Control of electrical conduction in DNA using oxygen hole doping, Appl. Phys. Lett. 80, 1670–1672.

    Article  ADS  Google Scholar 

  26. Porath, D., Bezryadin, A., de Vries, S. and Dekker, C. (2000) Direct measurement of electrical transport through DNA molecules, Nature 403, 635–638.

    Article  ADS  Google Scholar 

  27. Emin, D. (1986) Self-trapping in quasi-one-dimensional solids, Phys. Rev. B33, 3973–3975.

    Article  ADS  Google Scholar 

  28. Su, W.P., Schrieffer, J.R., and Heeger, A.J. (1980) Soliton excitations in polyacetylene, Phys. Rev. B22, 2099–2111.

    Article  ADS  Google Scholar 

  29. Sugiyama, H. and Saito, I. (1996) Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5′ Localization of HOMO of Stacked GG Bases in B-Form DNA, J. Am. Chem. Soc. 118, 7063–7068.

    Article  Google Scholar 

  30. Voityuk, A.A., Rosch, N., Bixon, M. and Jortner, J. (2000) Electronic Coupling for Charge Transfer and Transport in DNA, J. Phys. Chem. B104 9740–9745.

    Article  Google Scholar 

  31. Conwell, E.M. and Rakhmanova, S.V. (2000) Polarons in DNA, Proc. Natl. Acad. Sci. USA 97, 4556–4560.

    Article  ADS  Google Scholar 

  32. Lewis, F.D. et al. (2000) Dynamics and Equilibria for Oxidation of G, GG, and GGG Sequences in DNA Hairpins, J. Am. Chem. Soc. 122, 12037–12038.

    Article  Google Scholar 

  33. Conwell, E.M. and Basko, D.M. (2001) Hole Traps in DNA, J. Am. Chem. Soc. 123, 11441–11445.

    Article  Google Scholar 

  34. Voityuk, A.A, Jortner, J., Bixon, M. and Rosch, N. (2000) Energetics of hole transfer in DNA, Chem. Phys. Lett. 324, 430–434.

    Article  ADS  Google Scholar 

  35. Basko, D.M. and Conwell, E.M. (2002) Effect of Solvation on Hole Motion in DNA, Phys. Rev. Lett. 88, 098102–1–098102–4.

    Article  ADS  Google Scholar 

  36. Hjort, M. and Stafstrsom, S. (2001) Band Resonant Tunneling in DNA Molecules, Phys. Rev. Lett. 87, 228101–1–228101–4.

    Article  ADS  Google Scholar 

  37. Rakhmanova, S.V. and Conwell, E.M. (2001) Polaron Motion in DNA, J. Phys. Chem. B 105, 2056–2061.

    Google Scholar 

  38. Gueron, M., Eisinger, J. and Lamola, A.A. (1974) Excited States of Nucleic Acids in P. O. P. Ts’o (ed.), Basic Principles in Nucleic Acid Chemistry, Academic Press, New York, pp. 311–398.

    Google Scholar 

  39. Pecourt, J-M., Peon, J. and Kohler, B. (2000) Ultrafast Internal Conversion of Electronically Excited RNA and DNA Nucleosides in Water, J. Am. Chem. Soc. 122, 9348–9349.

    Article  Google Scholar 

  40. Eisinger, J. et al. (1966) Excimer Fluorescence of Dinucleotides, Polynucleotides, and DNA, Proc. Natl. Acad. Sci. USA, 55, 1015–1020.

    Article  ADS  Google Scholar 

  41. Michl, J. and Bonacic-Koutecky, V. (1990) Electronic Aspects of Photochemistry, Wiley, New York.

    Google Scholar 

  42. Georghiou, S., Kubala, S. and Large, C.C. (1998) Environmental Control of the Deformability of the DNA Double Helix, Photochem. and Photobio. 67, 526–531.

    Article  Google Scholar 

  43. Lakowicz, J.R. (2001) Intrinsic Fluorescence from DNA Can Be Enhanced by Metallic Particles, Biochem. and Biophys. Res. Commun. 286, 875–879.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Conwell, E.M., Basko, D.M. (2003). Transport and Optical Properties of DNA. In: Charra, F., Agranovich, V.M., Kajzar, F. (eds) Organic Nanophotonics. NATO Science Series, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0103-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0103-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1280-8

  • Online ISBN: 978-94-010-0103-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics