Skip to main content

Nonlinear Optical Study of Fullerene-Doped Conjugated Systems: New Materials for Nanophotonics Applications

  • Chapter
Organic Nanophotonics

Part of the book series: NATO Science Series ((NAII,volume 100))

Abstract

Nonlinear optical properties have been studied in C60 and C70-doped organic thin films (polyimide, 2-cyclooctylamino-5-nitropyridine, N-(4-nitrophenyl)-(L)-prolinol) and in the liquid crystal compounds based on them under a laser irradiation at wavelengths of 532, 805, and 1315 nm. The films can be applied as laser power attenuators at the laser energy density of more than 1.5–2 J cm-2 and at the laser energy density up to 0.8–1 J cm-2 in the visible and near infrared spectral ranges, respectively. The nonlinear refraction and the third order susceptibility have been determined to be n 2∼10-10 cm2W-1 and χ(3) ∼10-9 esu for the thin fullerene-doped films and n 2∼ 10-9 cm2W-1 and χ(3) ∼10-8 esu for polymer-dispersed liquid crystal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tutt, L.W., and Boggess, T.F. (1993) A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials, Prog. Quant. Electron. 17, 299–338.

    Article  ADS  Google Scholar 

  2. Kost, A., Tutt, L., Klein, M.B., Dougherty, T.K., and Elias, W.E. (1993) Optical limiting with C60 in polvmetvl methacrylate, Opt. Lett. 18. 334–336.

    Article  ADS  Google Scholar 

  3. Khoo, I.C. (1995) Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film, Opt. Lett. 20, 2137–2139.

    Article  ADS  Google Scholar 

  4. Kajzar, F., Taliani, C., Zamboni, R., Rossini, S., and Danieli, R. (1996) Nonlinear optical properties of fullerenes Synth. Met. 77, 257–263.

    Article  Google Scholar 

  5. Belousov, V.P., Belousova, I.M., Bespalov, V.G., Budtov, V.P., Volynkin, V.M., Grigor’ev, V.A., Danilov, O.B., Zhevlakov, A.P., Kalintsev, A.G., Ponomarev, A.N., Tul’skii, S.A., and Yutanova, E.Yu. (1997) Nonlinear optical properties of fullerene-containing media, J. Opt. Technol. 64, 870–871.

    ADS  Google Scholar 

  6. Kamanina, N.V., Kaporskii, L.N., and Kotov, B.V.(1998) Absorption spectra and optical limiting of the fullerene-polyimide system, Opt. Commun. 152, 280–282.

    Article  ADS  Google Scholar 

  7. Bartkiewicz, S., Miniewicz, A., and Kajzar, F. (2000) Incoherent-to-coherent image converter based on hybrid liquid crystal-photoconducting polymer structure, Synth. Met. 109, 105–108.

    Article  Google Scholar 

  8. Kamanina, N.V. (2002) Mechanisms of optical limiting in π-conjugated organic system: fullerene-doped polyimide, Synth. Met. 127, 121–128.

    Article  Google Scholar 

  9. Ganeev, RA., Ryasnyansky, A.I., Kamalov, S.R., Kamanina, N.V., Kulagin, I.A., Kodirov, M.K, and Usmanov, T. (2002) Investigation of nonlinear optical characteristics of colloidal metals, semiconductors, fullerenes and organic dyes by Z-scan method and third harmonic generation of laser radiation, Nonlin. Opt., 28, 263–282.

    Article  Google Scholar 

  10. Itaya, A., Sizzuki, I., Tsuboi, Y., and Miyasaaka, H. (1997) Photoinduced electron transfer processes of C60-doped poly(N-vinylcarbazole) films as revealed by picosecond laser photolysis, J. Phys. Chem. B101, 5118–5123.

    Google Scholar 

  11. Konarev, D.V., Zubavichus, Y.V., Slovokhotov, Yu. L., Shul’ga, V.N., Drichko, N.V., and Lyubovskaya, R.N. (1998) New complexes of fullerenes C60 and C70 with organic donor DBTTF: synthesis, some properties and crystal structure of DBTTF·C60·C6H6 (DBTTF=dibenzotetrathiafulvalene), Synth. Met. 92, 1–6.

    Article  Google Scholar 

  12. Du, Ch., Li, Yu., Wang, Sh., Shi, Zh., Xiao, Sh., and Zhu, D. (2001) Synthesis and characterization of [60]fullerene-substituted oligopyridines ruthenium complexes, Synth. Met. 124, 287–289.

    Article  Google Scholar 

  13. Kamanina, N.V. (2001) Peculiarities of optical limiting effect in π-conjugated organic systems based on 2-cyclooctylamino-5-nitropyridinedoped with C70, J. Opt. A: Pure Appl. Opt. 3, 321–325.

    Article  ADS  Google Scholar 

  14. Dubenskov, P.I., Zhuravleva, T.S., Vannikov, A.V., Vasilenko, N.A., Lamskaya, E.V., and Berendyaev, V.I. (1988) Photoconductive properties of some soluble aromatic polyimides, Vysokomol. Soedin. A30, 1211–1217 [in Russian].

    Google Scholar 

  15. Bosshard, Ch., Sutter, K., Günter, P., and Chapuis, G. (1989) Linear- and nonlinear-optical properties of 2-cyclooctylamino-5-nitropyridine, J. Opt. Soc. Am. B6, 721–725.

    Article  ADS  Google Scholar 

  16. Zyss, J., Nicoud, J.F., and Coquillay, M. (1984) Chirality and hydrogen bonding in molecular crystal for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP), J. Chem. Phys. 81, 4160–4167.

    Article  ADS  Google Scholar 

  17. Ruoff, R. S., Tse, D. S., Malhotra, R., and Lorets, D. S. (1993) Solubility of C60 in a variety of solvents, J. Phys. Chem. 97, 3379–3383.

    Article  Google Scholar 

  18. Kamanina, N.V. (1999) Reverse saturable absorption in fullerene-containing polyimides. Applicability of the Förster model, Opt. Commun., 162, 228–232.

    Article  ADS  Google Scholar 

  19. Danilov, V.V., and Kamanina, N.V. (1999) Self-diffraction and relaxation in a resonant liquid crystal medium, J. Opt. A: Pure Appl. Opt., 1, 37–40.

    Article  ADS  Google Scholar 

  20. Kamanina, N.V., Bagrov, I.V., Belousova, I.M., Kognovitskii, S.O., and Zhevlakov, A.P. (2001) Fullerene-doped π-conjugated organic systems under infrared laser irradiation, Opt. Commun., 194, 367–372.

    Article  ADS  Google Scholar 

  21. Kamanina, N.V., Bagrov, I.V., Belousova, I.M., Zhevlakov, A.P. (2001) The possibility of controlling the optical limiting effect by a weak light signal, Opt. Spectrosc. 91, 1–2.

    Article  ADS  Google Scholar 

  22. Bensasson, R.V., Hill, T., Lambert, C., Land, E.J., Leach, S., and Truscott, T.G. (1993), Triplet state absorption studies of C70 in benzene solution, Chem. Phys. Lett., 206, 197–202.

    Article  ADS  Google Scholar 

  23. Kamanina, N.V., Kaporskii, L.N., Pozdnyakov, A., and Kotov, B.V., (2000) Optical limiting in organic polyimide systems doped with fullerenes and dyes, Proceed. SPIE, 3939, 228–233.

    Article  ADS  Google Scholar 

  24. Kamanina, N., Barrientos, A., Leyderman, A., Cui, Y., Vikhnin, V., and Vlasse, M. (2000) Effect of fullerene doping on the absorption edge shift in COANP, Mol. Mater., 13, 275–280.

    Google Scholar 

  25. Razbirin, B. S., private communication at the seminar in Ioffe Physico-Technical Institute, St. Petersburg, Russia, 2002.

    Google Scholar 

  26. Wray, J.E., Liu, K.C., Chen, C.H., Garrett, W.R., Payne, M.G., Goedert, R., Templeton, D. (1994) Optical power limiting of fullerenes, Appl. Phys. Lett., 64, 2785–2787.

    Article  ADS  Google Scholar 

  27. Belousov, V.P., Belousova, I.M., Budtov, V.P., Danilov, V.V., Danilov, O.B., Kalintsev, A.G., and Mak, A.A. (1997) Fullerenes: Structural, physical-chemical, and nonlinear optical properties, J. Opt. Technol. 64, 1081–1109.

    ADS  Google Scholar 

  28. Bazhenov, A.V., Gorbunov, A.V., Maksimuk, M.Yu., Fursova, T.N. (1997). Photoinduced absorption of C60 films at 0.08–4.0 eV, J. Exp. Theor. Phys. 85, 135–145.

    Article  ADS  Google Scholar 

  29. Kamanina, N.V., Plekhanov A.I. (2002) Mechanisms of optical limiting in fullerene-containing π-conjugated organic structures based on polyimide and COANP, Opt. Spectrosc. 93, to be published.

    Google Scholar 

  30. Förster, T. (1959) Transfer mechanisms of electronnic excitation, Disc. Farad. Soc., 27, 7–17.

    Article  Google Scholar 

  31. Kamanina, N.V. (2001) Light-induced variation in the refractive index in a polyimide-fullerene system, Opt. Spectrosc. 90, 867–871.

    Article  ADS  Google Scholar 

  32. Gurvich, L.V., Karachevtsev, G.V., Kondrat’ev, V.N., Lebedev, Yu.A., Medvedev, V.A., Potapov, V.K., and Khodeev, Yu.S. (1974) Energies of Chemical Bond Breaking, Ionization Potentials And Electron Affinity, Nauka, Moscow, [in Russian].

    Google Scholar 

  33. Vinogradova, S.V., Slonimskii, G.L., Vygodskii, Ya.S., Askadskii, A.A., Mzhel’skii, A.I., Churochkina, N.A., Korshak, V.V. (1969) On structure and properties of aromatic polyimides, Vysokomol. Soedin., A11, 2725–2740 [in Russian].

    Google Scholar 

  34. Bessonov, M. I., Kuznetsov, N. P., Koton, M. M. (1978) On transition temperatures of aromatic polyimides and physical principles of their chemical classification, Vysokomol. Soedin., A20, 347–354 [in Russian].

    Google Scholar 

  35. Hosoya, M., Ichimura, K., Wang, Z.H., Dresselhaus, G., Dresselhaus, M.S., Eklund, P.C. (1994) Dark conductivity and photoconductivity in solid films of C70, Ca60, and KxC70, Phys. Rev. B49, 4981–4986.

    Article  MathSciNet  ADS  Google Scholar 

  36. Collier, R.J., Burckhardt, C.B., and Lin, L.H. (1971) Optical Holography, Academic Press, New York and London,.

    Google Scholar 

  37. Bershtein, V.A. and Egorov, V.M. (1990) Differential Scanning Calorimetry in Physical Chemistry of Polymers, Chemistry, Leningrad [in Russian].

    Google Scholar 

  38. Akhmanov, S.A. and Nikitin, S.Yu. (1997) Physical Optics, Clarendon., Oxford.

    Google Scholar 

  39. Liu Huimin, Taheri B., Weiyi Jia (1994). Anomalous optical response of C60 and C70 in toluene, Phys. Rev. B49, 10166–10169.

    Article  Google Scholar 

  40. Kaizar, F., Taliani, C., Muccini, M., Zamboni, R., Rossini, S., Danieli, R. (1994) Third order nonlinear optical properties of fullerenes, Proceed. SPIE 2284, 58–68.

    Article  ADS  Google Scholar 

  41. Li, J., Feng, J., Sun, J. (1993) Quantum chemical calculation on the spectra and nonlinear third order optical susceptibility, J. Chem.Phys. 203, 560–564.

    Google Scholar 

  42. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R. (1990) Solid C60: a new form of carbon, Nature 347, 354–358.

    Article  ADS  Google Scholar 

  43. Ganeev, R.A., Ryasnyansky, A.I., Kodirov, M.K., Usmanov, T. (2000) Nonlinear optical characteristics of C60 and C70 films and solutions, Opt. Commun. 185, 473–478.

    Article  ADS  Google Scholar 

  44. Kamanina N.V. (2002) Optical investigations of C70 — COANP — liquid crystal system, J. Opt. A: Pure Appl. Opt. 4, to be published

    Google Scholar 

  45. Akhmanov, S.A., Vorontsov, M.A. (eds.) (1990) New Physical Principles of Optical Information Processing, Nauka, Moscow [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kamanina, N.V. (2003). Nonlinear Optical Study of Fullerene-Doped Conjugated Systems: New Materials for Nanophotonics Applications. In: Charra, F., Agranovich, V.M., Kajzar, F. (eds) Organic Nanophotonics. NATO Science Series, vol 100. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0103-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0103-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1280-8

  • Online ISBN: 978-94-010-0103-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics